地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 1-17.DOI: 10.13745/j.esf.sf.2022.11.7
所属专题: 印度-欧亚大陆碰撞及其远程效应
• “印度-欧亚大陆碰撞及其远程效应”专栏之六 • 上一篇 下一篇
郭晓玉1,2(), 罗旭聪1,2, 高锐1,2, 徐啸1,2,*(
), 卢占武3, 黄兴富4,5, 李文辉3, 李春森1,2
收稿日期:
2022-10-20
修回日期:
2022-11-07
出版日期:
2023-03-25
发布日期:
2023-01-05
通信作者:
徐啸
作者简介:
郭晓玉(1979—),女,教授,博士生导师,主要从事青藏高原及周缘自新生代以来的构造变形深部过程研究。E-mail: guoxy37@mail.sysu.edu.cn
基金资助:
GUO Xiaoyu1,2(), LUO Xucong1,2, GAO Rui1,2, XU Xiao1,2,*(
), LU Zhanwu3, HUANG Xingfu4,5, LI Wenhui3, LI Chunsen1,2
Received:
2022-10-20
Revised:
2022-11-07
Online:
2023-03-25
Published:
2023-01-05
Contact:
XU Xiao
摘要:
印度板块自新生代早期开始沿雅鲁藏布江缝合带向北与欧亚板块碰撞以来,印度板块的深俯冲过程一直是大家关注的焦点,而垂向上主碰撞带全地壳尺度由深及浅的相互作用关系研究程度相对较弱,主要归咎于之前缺少全地壳尺度高分辨率数据资料,从而也阻碍了对主碰撞带巨厚地壳成因机制及深部地球动力学过程的了解。在本次研究中,分别基于横穿主碰撞带中部和东部的180 km及100 km长的深反射地震剖面进行精细构造地球物理学分析,揭示了主碰撞带全地壳尺度由深及浅的相互作用关系:(1)横向上,印度板块下地壳存在北向俯冲,且俯冲前缘有限的存在于南拉萨地体南缘。上覆的南拉萨地体则出现透明反射结构和中拉萨地体统一北倾的反射结构。(2)垂向上,印度地壳主要表现下地壳俯冲、中上地壳双冲构造回返结构。南拉萨地体四分之三的地壳表现为透明反射。占据另外四分之一的上地壳顶部表现为统一的南倾结构形态;中拉萨地体则以下地壳北倾、上地壳上拱反射结构为主。三者皆在垂向上出现差异性变形。(3)主碰撞带上地壳顶部表现为统一的后展式顶板逆冲推覆构造,该逆冲推覆系统可一直从南拉萨地体北边界的洛巴堆—米拉山断裂向南越过南倾的雅江缝合带延伸至北喜马拉雅穹窿背斜北翼。结合大地电磁数据所揭示的南拉萨地体高熔体百分比区域沿俯冲印度下地壳顶边界发生的南移现象,研究结果揭示南拉萨地体巨厚地壳主要由新特提斯构造域幕式岩浆作用所形成的新生地壳物质易挤压变形引起。同时,南拉萨地体幕式岩浆作用在印度与欧亚板块的相互碰撞作用过程中发生了热量的向南运移。该过程引发北喜马拉雅构造带深熔作用的同时减弱了北喜马拉雅构造带地壳机械强度,从而使中上地壳物质的双冲构造回返主要表现为短波长背型堆垛结构,并垂向增厚了俯冲印度地壳厚度。同时,背型堆垛构造形变过程所导致的北喜马拉雅穹窿带的加速出露给主碰撞带区域上地壳顶部带来北向的构造挤压推覆作用,最终使主碰撞带区域在北喜马拉雅穹窿区域以北展现为统一的后展式顶板逆冲推覆结构构造。印度-欧亚板块主碰撞带的圈层相互关系是造成该区域巨厚地壳的关键,其上地壳顶板逆冲推覆过程亦降低了主碰撞区域的地形起伏。
中图分类号:
郭晓玉, 罗旭聪, 高锐, 徐啸, 卢占武, 黄兴富, 李文辉, 李春森. 印度-欧亚板块主碰撞带全地壳尺度相互作用关系研究[J]. 地学前缘, 2023, 30(2): 1-17.
GUO Xiaoyu, LUO Xucong, GAO Rui, XU Xiao, LU Zhanwu, HUANG Xingfu, LI Wenhui, LI Chunsen. Crustal-scale plate interactions beneath the dominant domain in the India-Eurasia collision zone—a tectonogeophysical study[J]. Earth Science Frontiers, 2023, 30(2): 1-17.
图1 印度-欧亚板块主碰撞带区域中部及邻区构造地质简图(据文献[5⇓⇓⇓⇓-10]修改) (a)—研究区区域地质简图;(b)—印度-欧亚板块主碰撞带区域中部地质简图。a图中黄色粗线代表深反射地震测线位置,黑粗线代表研究大地电磁测线位置图,红框代表了研究区印度-欧亚板块主碰撞带区域。MCT—主中央逆冲断裂;CR—错那裂谷带;GCT—冈底斯反冲断裂;GT—冈底斯逆冲断裂。
Fig.1 Simplified geological maps of the middle section of the dominant domain in the India-Eurasia collision zone and adjacent area. Modified after [5⇓⇓⇓⇓-10].
图2 横穿主碰撞带中部180 km长深反射地震剖面 (a)—未解释的深反射地震剖面。剖面位置见图1中Ⅰ;(b)—提取强振幅信息后的剖面;(c)—提取强振幅信息后的线条图;(d)—壳内反射结构简化图以突出全地壳尺度主要结构框架。
Fig.2 180 km-long deep seismic reflection profile across the middle of the dominant collision domain in the collision zone along 88.5°E
图3 横穿主碰撞带东部100 km长深反射地震、INDEPTH深反射地震剖面和INDEPTH大地电磁联合剖面图(据文献[8,52-53]修改) (a)—未解释的联合剖面(地理位置参考图1);(b)—深反射地震剖面强振幅信息提取;(c)—深反射地震剖面强振幅信息提取的线条图;(d)—主碰撞带东部全地壳精细结构与全地壳尺度电性结构特性特征统一分布图。
Fig.3 Comparisons of the magnetotelluric (MT) profile with the 100 km-long deep seismic reflection profile and INDEPTH deep seismic profile across the eastern dominant domain in the collision zone along 92°E. Modified after [8,52-53].
图4 综合多种数据的构造地球物理学研究(据文献[6,10]修改) (a)—84°E~94°E南拉萨地体和中拉萨地体基于中生代—新生代花岗岩和其他酸性岩锆石εHf(t)等值线分布图;(b)—南拉萨地体和中拉萨地体岩浆岩锆石U-Pb年龄与εHf(t)值;(c)—碰撞带东部和中部全地壳尺度精细结构合并揭示的研究区全地壳结构与大地电磁结构对比。
Fig.4 Tectonogeophysical characteristics of the study area. Modified after [6,10].
图5 构造地球物理学研究所揭示的印度-欧亚板块主碰撞带全地壳尺度结构、物性分布特征图
Fig.5 Crustal-scale architecture of and probable distribution of crustal properties in the study area revealed by tectonogeophysical analysis
图6 印度-欧亚板块主碰撞带新生代以来横向、垂向相互作用关系演化图 (a)-(e)图揭示的构造演化过程揭示了全地壳尺度新生地壳生长主要受控于新特提斯洋俯冲回撤、海沟向海撤退所带来的空间,而南拉萨地体冈底斯全地壳尺度岩浆幕式岩浆作用对于主碰撞带区域垂向和横向强烈构造形变起到了催化润滑作用。
Fig.6 Interactions between lateral and vertical crustal growth in the dominant domain in the India-Eurasia collision zone since the Cenozoic
[1] | 任纪舜, 牛宝贵, 赵磊, 等. 地球系统多圈层构造观的基本内涵[J]. 地质力学学报, 2019, 25(5): 607-612. |
[2] |
ZHANG P Z, SHEN Z K, WANG M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812.
DOI URL |
[3] | 刘代志, 何继善. 一门新的交叉学科: 构造地球物理学[J]. 中南矿冶学院学报, 1993, 24(6): 719-724. |
[4] |
YIN A, HARRISON T M, MURPHY M, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11): 1644-1664.
DOI URL |
[5] | PAN G T, DING J, YAO D S, et al. Geological map of Qinghai-Xizang Tibet Plateau and adjacent areas (1∶1500000)[CM]. Chengdu: Chengdu Cartographic Publishing House, 2004. |
[6] |
LU Z, GUO X, GAO R, et al. Active construction of southernmost Tibet revealed by deep seismic imaging[J]. Nature Communications, 2022, 13(1): 3143.
DOI PMID |
[7] |
GUO X Y, LI W H, GAO R, et al. Nonuniform subduction of the Indian crust beneath the Himalayas[J]. Scientific Reports, 2017, 7(1): 1-8.
DOI URL |
[8] |
DONG X Y, LI W H, LU Z W, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780: 228395.
DOI URL |
[9] | GUO X Y, LI C S, GAO R, et al. The India-Eurasia convergence system: Late Oligocene to early Miocene passive roof thrusting driven by deep-rooted duplex stacking[J]. Geosystems and Geoenvironment, 2022, 1(1): 1-14. |
[10] | XUE S, CHEN Y, LIANG H, et al. Deep electrical resistivity structure across the Gyaring Co Fault in Central Tibet revealed by magnetotelluric data and its implication[J]. 2021, 809: 228835. |
[11] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
DOI URL |
[12] | 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6): 639-649. |
[13] | LIU Z C, WU F Y, JI W Q, et al. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model[J]. Lithos, 2014, 208: 118-136. |
[14] |
LEE J, HACKER B, WANG Y. Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet[J]. Journal of Structural Geology, 2004, 26(12): 2297-2316.
DOI URL |
[15] |
BURG J, BRUNEL M, GAPAIS D, et al. Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China)[J]. Journal of Structural Geology, 1984, 6(5): 535-542.
DOI URL |
[16] |
GUO L, ZHANG J J, ZHANG B. Structures, kinematics, thermochronology and tectonic evolution of the Ramba gneiss dome in the northern Himalaya[J]. Progress in Natural Science, 2008, 18(7): 851-860.
DOI URL |
[17] |
TEYSSIER C, WHITNEY D L. Gneiss domes and orogeny[J]. Geology, 2002, 30(12): 1139-1142.
DOI URL |
[18] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015(1): 1-36. |
[19] |
KELLETT D A, GRUJIC D, ERDMANN S. Miocene structural reorganization of the South Tibetan detachment, eastern Himalaya: implications for continental collision[J]. Lithosphere, 2009, 1(5): 259-281.
DOI URL |
[20] |
SEARLE M, SIMPSON R, LAW R, et al. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet[J]. Journal of the Geological Society, 2003, 160(3): 345-366.
DOI URL |
[21] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76(1/2): 1-131.
DOI URL |
[22] |
MARK HARRISON T, LOVERA O M, GROVE M. New insights into the origin of two contrasting Himalayan granite belts[J]. Geology, 1997, 25(10): 899-902.
DOI URL |
[23] |
MONTEL J M. A model for monazite/melt equilibrium and application to the generation of granitic magmas[J]. Chemical Geology, 1993, 110(1/2/3): 127-146.
DOI URL |
[24] |
GAO P, ZHENG Y F, MAYNE M J, et al. Miocene high-temperature leucogranite magmatism in the Himalayan orogen[J]. Geological Society of America Bulletin, 2021, 133(3/4): 679-690.
DOI URL |
[25] | 潘桂棠, 王培生, 徐耀荣. 青藏高原新生代构造演化[M]. 北京: 地质出版社, 1990. |
[26] |
DING L, SPICER R, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-223.
DOI URL |
[27] |
ZHU D C, ZHAO Z D, NIU Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
DOI URL |
[28] | 张泽明, 丁慧霞, 董昕, 等. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 2019, 35(2): 275-294. |
[29] | MENG Y K, XU Z Q, MA S W, et al. The 40Ar/39Ar geochronological constraints on the Xaitongmoin-Quxu ductile shear zone in the Gangdese batholith, southern Xizang (Tibet)[J]. Geological Review, 2016, 62(4): 795-806. |
[30] | QUIDELLEUR X, GROVE M, LOVERA O M, et al. Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B2): 2659-2679. |
[31] | XIANG S Y, ZHANG S Z, HU J R, et al. Activation of the Mila-Mountain fault in Tibet, evidence from apatite fission track geochronology[J]. Earth Science, 2012, 37(Suppl 2): 39-46. |
[32] |
DEPAOLO D J, HARRISON T M, WIELICKI M, et al. Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 and 32 Ma at the southern margin of Tibet[J]. Gondwana Research, 2019, 73: 123-135.
DOI URL |
[33] | TAYLOR M, FORTE A, LASKOWSKI A, et al. Active uplift of southern Tibet revealed[J]. GSA Today, 2021, 31: 4-10. |
[34] | ZHU D C, WANG Q, ZHAO Z D, et al. Magmatic record of India-Asia collision[J]. Scientific Reports, 2015, 5(1): 1-9. |
[35] |
LEE H Y, CHUNG S L, LO C H, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tectonophysics, 2009, 477(1/2): 20-35.
DOI URL |
[36] |
CHUNG S L, LIU D Y, JI J Q, et al. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11): 1021-1025.
DOI URL |
[37] |
NáBLEK J, HETéNYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5946): 1371-1375.
DOI PMID |
[38] |
HOU Z Q, DUAN L F, LU Y J, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology, 2015, 110(6): 1541-1575.
DOI URL |
[39] |
MO X X, NIU Y L, DONG G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/2/3/4): 49-67.
DOI URL |
[40] |
ZHU D C, WANG Q, CAWOOD P A, et al. Raising the Gangdese mountains in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 214-223.
DOI URL |
[41] | ENGLAND P, HOUSEMAN G. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3664-3676. |
[42] | MA X X, MEERT J G, XU Z Q, et al. Evidence of magma mixing identified in the Early Eocene Caina pluton from the Gangdese Batholith, southern Tibet[J]. Lithos, 2017, 278: 126-139. |
[43] |
MO X X, HOU Z Q, NIU Y L, et al. Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1/2): 225-242.
DOI URL |
[44] |
NIU Y L, ZHAO Z D, ZHU D C, et al. Continental collision zones are primary sites for net continental crust growth: a testable hypothesis[J]. Earth-Science Reviews, 2013, 127: 96-110.
DOI URL |
[45] |
WANG R, RICHARDS J P, ZHOU L M, et al. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet[J]. Earth-Science Reviews, 2015, 150: 68-94.
DOI URL |
[46] | CHUNG S L, CHU M F, ZHANG Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3/4): 173-196. |
[47] |
ZHANG P, NAJMAN Y, MEI L F, et al. Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics[J]. Earth-Science Reviews, 2019, 192: 601-630.
DOI URL |
[48] |
MARK N, SCHOFIELD N, GARDINER D, et al. Overthickening of sedimentary sequences by igneous intrusions[J]. Journal of the Geological Society, 2019, 176(1): 46-60.
DOI |
[49] |
DING L, LAI Q Z. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision[J]. Chinese Science Bulletin, 2003, 48(15): 1604-1610.
DOI URL |
[50] |
FAN S, MURPHY M A. Three-dimensional strain accumulation and partitioning in an arcuate orogenic wedge: an example from the Himalaya[J]. Geological Society of America Bulletin, 2021, 133(1/2): 3-18.
DOI URL |
[51] | VEEKEN P P. Seismic stratigraphy and depositional facies models[M]. Netherlands: Academic Press, 2013. |
[52] |
HAUCK M, NELSON K, BROWN L, et al. Crustal structure of the Himalayan orogen at -90° east longitude from Project INDEPTH deep reflection profiles[J]. Tectonics, 1998, 17(4): 481-500.
DOI URL |
[53] |
UNSWORTH M, JONES A G, WEI W, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064): 78-81.
DOI URL |
[54] | XIE C L, JIN S, WEI W B, et al. Middle crustal partial melting triggered since the Mid-Miocene in southern Tibet: insights from magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022435. |
[55] |
XIE C L, JIN S, WEI W B, et al. Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data[J]. Earth, Planets Space, 2017, 69(1): 1-17.
DOI URL |
[56] |
ZHAO W J, NELSON K, CHE J, et al. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature, 1993, 366(6455): 557-566.
DOI URL |
[57] |
GAO R, LU Z W, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7): 555-560.
DOI URL |
[58] |
INFANTE-PAEZ L, MARFURT K J. Seismic expression and geomorphology of igneous bodies: a Taranaki Basin, New Zealand, case study[J]. Interpretation, 2017, 5(3): SK121-SK40.
DOI URL |
[59] | MOLNAR P, STOCK J M. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 2009, 28(3): 1-11. |
[60] |
PATRIAT P, ACHACHE J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates[J]. Nature, 1984, 311(5987): 615-621.
DOI URL |
[61] |
ZHU D C, WANG Q, CHUNG S L, et al. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma[J]. Geological Society, London, Special Publications, 2019, 483(1): 583-604.
DOI URL |
[62] | PUSOK A E, STEGMAN D R. The convergence history of India-Eurasia records multiple subduction dynamics processes[J]. Science Advances, 2020, 6(19): eaaz8681. |
[63] |
KLOOTWIJK C T, GEE J S, PEIRCE J W, et al. An early India-Asia contact: paleomagnetic constraints from Ninetyeast ridge, ODP Leg 121[J]. Geology, 1992, 20(5): 395-403.
DOI URL |
[64] | 李秋耘, 杨志明, 王瑞, 等. 西藏驱龙矿区中新世侵入岩锆石微量和 Hf-O 同位素研究[J]. 岩石矿物学杂志, 2021, 40(6): 1023-1048. |
[65] |
XUE S, CHEN Y, LIANG H D, et al. Deep electrical resistivity structure across the Gyaring Co Fault in central Tibet revealed by magnetotelluric data and its implication[J]. Tectonophysics, 2021, 809: 228835.
DOI URL |
[66] |
NELSON K. A unified view of craton evolution motivated by recent deep seismic reflection and refraction results[J]. Geophysical Journal International, 1991, 105(1): 25-35.
DOI URL |
[67] |
YAN M D, ZHANG D W, FANG X M, et al. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: implications for the evolution of the Paleo-and Meso-Tethys[J]. Gondwana Research, 2016, 39: 292-316.
DOI URL |
[68] |
HAMMER P T, CLOWES R M, COOK F A, et al. The Lithoprobe trans-continental lithospheric cross sections: imaging the internal structure of the North American continent[J]. Canadian Journal of Earth Sciences, 2010, 47(5): 821-857.
DOI URL |
[69] | QUIDELLEUR X, GROVE M, LOVERA O M, et al. Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B2): 2659-2679. |
[70] | MENG Y, XU Z, MA S, et al. The 40Ar/39Ar Geochronological constraints on the Xaitongmoin-Quxu Ductile Shear Zone in the Gangdese Batholith, southern Xizang( Tibet)[J]. Geological Review, 2016, 62(4): 795-806. |
[71] |
YIN A, HARRISON T M, MURPHY M, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11): 1644-1664.
DOI URL |
[72] | XIANG S, ZHANG S, HU J, et al. Activation of the Mila-Mountain fault in Tibet: evidence from apatite fission track geochronology[J]. Earth Science: Journal of China University of Geosciences, 2012, 37: 39-46. |
[73] |
WU Y, GUO X Y, GAO R, et al. Deep seismic reflection insights into syn-Rodinian crustal recycling[J]. Precambrian Research, 2021, 354: 106075.
DOI URL |
[74] |
YAN H Y, LONG X P, LI J, et al. Arc andesitic rocks derived from partial melts of mélange diapir in subduction zones: evidence from whole-rock geochemistry and Sr-Nd-Mo isotopes of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 456-475.
DOI URL |
[75] |
HACKER B R, KELEMEN P B, BEHN M D. Differentiation of the continental crust by relamination[J]. Earth and Planetary Science Letters, 2011, 307(3/4): 501-516.
DOI URL |
[76] |
ZHANG Z, DONG X, XIANG H, et al. Reworking of the Gangdese magmatic arc, southeastern Tibet: post-collisional metamorphism and anatexis[J]. Journal of Metamorphic Geology, 2015, 33(1): 1-21.
DOI URL |
[77] |
BURKE W B, LASKOWSKI A K, ORME D A, et al. Record of crustal thickening and synconvergent extension from the Dajiamang Tso Rift, southern Tibet[J]. Geosciences, 2021, 11(5): 209.
DOI URL |
[78] | SUNDELL K E, LASKOWSKI A K, KAPP P A, et al. Jurassic to Neogene quantitative crustal thickness estimates in southern Tibet[J]. GSA Today, 2021, 31(6): 4-10. |
[79] |
ZHENG Y C, HOU Z Q, FU Q, et al. Mantle inputs to Himalayan anatexis: insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J]. Lithos, 2016, 264: 125-140.
DOI URL |
[1] | 张艳斌, 翟明国, 周艳艳, 周李岗. 大陆下地壳[J]. 地学前缘, 2024, 31(1): 28-45. |
[2] | 李春森, 徐啸, 向波, 郭晓玉, 吴优, 吴佳杰, 罗旭聪, 余嘉豪, 仝霄飞, 袁梓昭, 林燕琪. 北喜马拉雅构造带东部Moho形态研究:以接收函数3DCCP方法为例[J]. 地学前缘, 2023, 30(2): 57-67. |
[3] | 梁锋,吕庆田,严加永,刘振东. 宁芜盆地深部地壳结构和岩浆侵入体形态特征及其对成矿的启示[J]. 地学前缘, 2017, 24(5): 138-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||