地学前缘 ›› 2020, Vol. 27 ›› Issue (5): 136-150.DOI: 10.13745/j.esf.sf.2020.5.58
所属专题: Research Articles (English)
Victor M. Okrugin(), Elena D. Skilskaia
收稿日期:
2020-03-11
修回日期:
2020-06-02
出版日期:
2020-09-25
发布日期:
2020-09-25
作者简介:
E-mail address: wideworldscience@gmail.com
基金资助:
Victor M. Okrugin(), Elena D. Skilskaia
Received:
2020-03-11
Revised:
2020-06-02
Online:
2020-09-25
Published:
2020-09-25
摘要:
Baranevskoy金-银矿床产于巴尔喀什火山的火山口,该火山坐落在堪察加中部矿区东南部。本文基于矿物学原理和流体包裹体数据分析探讨了Baranevskoy金-银矿床的成矿环境及其物理化学条件。Baranevskoy金-银矿床的围岩为中新世—上新世的安山岩和玄武岩。热液蚀变活动随深度逐渐变化,从而可以进一步划分出最深部的石英带、中部的石英-绢云母(明矾石)-黄铁矿-铁钛氧化物带及其伴生的石英-绢云母-伊利石-黄铁矿矿物组合和浅部的石英-冰长石-水云母-黏土矿物-碳酸盐岩带。成矿早期存在密集浸染的铜矿化,主要矿石矿物有黄铜矿、斑铜矿、砷黝铜矿-黝铜矿,并在Rhzavaya矿脉中存在少量的自然金。其中砷黝铜矿-黝铜矿系列以砷黝铜矿和黝铜矿两个端员作为代表,且以黝铜矿为主。成矿后期产出代表晚期金-银矿化的自然金、黄铁矿、黄铜矿、闪锌矿、方铅矿、碲化物和硫酸盐等标志性矿物。早期铜矿化(第一期)被认为是中硫阶段,紧随其后的为低硫型金-银矿化(第二期和第三期)。金从第一期到第三期都有沉淀。经研究发现,自然金也赋存于变质围岩的岩石裂隙内。早期的自然金相对富银,其中金的摩尔分数为59%~65%,低于后期(第二、第三期)自然金中金的摩尔分数(64%~72%)。流体包裹体显微测温结果显示,位于中部(Central)矿脉的包裹体均一温度为190~280 ℃,Rzhavaya矿脉的包裹体为190~240 ℃,产出自然金的蚀变围岩中石英的包裹体温度为230~310 ℃。包裹体总体表现出低盐度(0.9%~2.4% NaCleq)特征,推测存在大气水的混入。
中图分类号:
Victor M. Okrugin, Elena D. Skilskaia. 俄罗斯堪察加中部Baranevskoy金-银矿床矿物学与流体包裹体研究[J]. 地学前缘, 2020, 27(5): 136-150.
Victor M. Okrugin, Elena D. Skilskaia. Mineralogy and fluid inclusions study of the Baranevskoye gold-silver deposit, central Kamchatka, Russia[J]. Earth Science Frontiers, 2020, 27(5): 136-150.
Fig.1 A simplified map showing location of the Baranevskoye deposit in the Central Kamchatka Mining District in the south of the Central Kamchatka Volcanic Belt.
Fig.3 Representative ore specimens of the Baranevskoye deposit from the Rhzavaya vein (a), the Central vein (b), the Stockwork (c), and the Yuznaya vein (d).
Elements | Mass fraction (%) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Galena | Pyrite | Sphalerite | Chalcopyrite | Bornite | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5* | 6 | 7 | 8 | 9* | 10 | 11 | ||||||||||||||||
S | 12.34 | 12.21 | 51.73 | 53.36 | 51.8 | 34.32 | 31.81 | 33.6 | 34.29 | 25.13 | 25.44 | |||||||||||||||
As | - | - | 3.19 | - | - | - | - | - | - | - | - | |||||||||||||||
Pb | 86.95 | 88.38 | - | - | - | - | - | - | - | - | - | |||||||||||||||
Fe | - | - | 45.09 | 46.72 | 46.81 | 2.64 | 0.24 | 30.72 | 31.01 | 11.76 | 11.37 | |||||||||||||||
Cd | - | - | - | - | - | 0.35 | 0.12 | - | - | - | - | |||||||||||||||
Cu | - | - | - | - | - | - | - | 34.52 | 34.76 | 63.69 | 62.97 | |||||||||||||||
Zn | - | - | - | - | - | 62.53 | 64.88 | - | - | - | - | |||||||||||||||
Sum | 99.29 | 100.59 | 100.01 | 100.08 | 98.61 | 99.84 | 97.05 | 98.84 | 100.06 | 100.58 | 99.78 | |||||||||||||||
Elements | Mole fraction (%) | |||||||||||||||||||||||||
Galena | Pyrite | Sphalerite | Chalcopyrite | Bornite | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5* | 6 | 7 | 8 | 9* | 10 | 11 | ||||||||||||||||
S | 47.31 | 46.89 | 65.50 | 66.45 | 65.74 | 51.46 | 49.82 | 48.94 | 49.24 | 39.26 | 39.92 | |||||||||||||||
As | - | - | 1.72 | - | 34.26 | - | - | - | - | - | - | |||||||||||||||
Pb | 52.69 | 53.11 | - | - | - | - | - | - | - | - | - | |||||||||||||||
Fe | - | - | 32.78 | 33.55 | - | 2.40 | 0.22 | 25.69 | 25.52 | 10.54 | 10.24 | |||||||||||||||
Cd | - | - | - | - | - | 0.15 | 0.12 | - | - | - | - | |||||||||||||||
Cu | - | - | - | - | - | - | - | 25.37 | 25.24 | 50.2 | 49.84 | |||||||||||||||
Zn | - | - | - | - | - | 45.99 | 49.82 | - | - | - | - |
Table 1 Representative electron microprobe analyses of sulfide minerals from the Central and Rhzavaya veins.
Elements | Mass fraction (%) | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Galena | Pyrite | Sphalerite | Chalcopyrite | Bornite | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5* | 6 | 7 | 8 | 9* | 10 | 11 | ||||||||||||||||
S | 12.34 | 12.21 | 51.73 | 53.36 | 51.8 | 34.32 | 31.81 | 33.6 | 34.29 | 25.13 | 25.44 | |||||||||||||||
As | - | - | 3.19 | - | - | - | - | - | - | - | - | |||||||||||||||
Pb | 86.95 | 88.38 | - | - | - | - | - | - | - | - | - | |||||||||||||||
Fe | - | - | 45.09 | 46.72 | 46.81 | 2.64 | 0.24 | 30.72 | 31.01 | 11.76 | 11.37 | |||||||||||||||
Cd | - | - | - | - | - | 0.35 | 0.12 | - | - | - | - | |||||||||||||||
Cu | - | - | - | - | - | - | - | 34.52 | 34.76 | 63.69 | 62.97 | |||||||||||||||
Zn | - | - | - | - | - | 62.53 | 64.88 | - | - | - | - | |||||||||||||||
Sum | 99.29 | 100.59 | 100.01 | 100.08 | 98.61 | 99.84 | 97.05 | 98.84 | 100.06 | 100.58 | 99.78 | |||||||||||||||
Elements | Mole fraction (%) | |||||||||||||||||||||||||
Galena | Pyrite | Sphalerite | Chalcopyrite | Bornite | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5* | 6 | 7 | 8 | 9* | 10 | 11 | ||||||||||||||||
S | 47.31 | 46.89 | 65.50 | 66.45 | 65.74 | 51.46 | 49.82 | 48.94 | 49.24 | 39.26 | 39.92 | |||||||||||||||
As | - | - | 1.72 | - | 34.26 | - | - | - | - | - | - | |||||||||||||||
Pb | 52.69 | 53.11 | - | - | - | - | - | - | - | - | - | |||||||||||||||
Fe | - | - | 32.78 | 33.55 | - | 2.40 | 0.22 | 25.69 | 25.52 | 10.54 | 10.24 | |||||||||||||||
Cd | - | - | - | - | - | 0.15 | 0.12 | - | - | - | - | |||||||||||||||
Cu | - | - | - | - | - | - | - | 25.37 | 25.24 | 50.2 | 49.84 | |||||||||||||||
Zn | - | - | - | - | - | 45.99 | 49.82 | - | - | - | - |
Elements | Mass fraction (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | 43.19 | 44.20 | 41.81 | 42.14 | 45.3 | 43.19 | 42.02 | 42.52 | 44.49 | 41.17 |
Ag | 0.12 | 0.04 | 0.14 | 0.08 | 0.04 | 0.12 | 0.14 | 0.19 | 0.06 | 0.12 |
Fe | 2.88 | 3.41 | 2.35 | 2.35 | 4.38 | 3.20 | 2.82 | 2.81 | 3.33 | 3.92 |
Zn | 3.32 | 2.77 | 3.80 | 3.92 | 1.93 | 2.98 | 2.73 | 3.10 | 2.82 | 3.74 |
Sb | 17.53 | 9.69 | 19.93 | 19.03 | 3.31 | 18.21 | 22.59 | 17.47 | 5.05 | 18.25 |
As | 8.35 | 13.78 | 6.77 | 7.18 | 18.84 | 9.17 | 5.39 | 8.73 | 17.57 | 7.29 |
S | 25.61 | 27.10 | 26.04 | 25.66 | 27.94 | 25.63 | 25.26 | 25.80 | 26.97 | 25.84 |
Sum | 101.00 | 100.99 | 100.84 | 100.36 | 101.74 | 102.5 | 100.95 | 100.62 | 100.29 | 100.33 |
Elements | Number of atoms | |||||||||
Cu | 10.727 | 10.571 | 10.449 | 10.571 | 10.484 | 10.626 | 10.652 | 10.582 | 10.571 | 10.266 |
Ag | 0.017 | 0.006 | 0.020 | 0.023 | 0.006 | 0.017 | 0.020 | 0.026 | 0.009 | 0.020 |
Fe | 0.815 | 0.928 | 0.670 | 0.670 | 1.151 | 0.896 | 0.812 | 0.798 | 0.896 | 1.114 |
Zn | 0.800 | 0.644 | 0.925 | 0.954 | 0.432 | 0.711 | 0.673 | 0.748 | 0.650 | 0.748 |
Sb | 2.274 | 1.212 | 2.598 | 2.491 | 0.403 | 2.337 | 2.990 | 2.271 | 0.638 | 2.375 |
As | 1.760 | 2.799 | 1.436 | 1.528 | 3.698 | 1.911 | 1.16 | 1.844 | 3.541 | 1.543 |
S | 12.606 | 12.841 | 12.902 | 12.763 | 12.821 | 12.502 | 12.693 | 12.731 | 12.696 | 12.775 |
Table 2 Representative electron microprobe analyses and calculated formulas of tetrahedrite-tennantite group minerals.
Elements | Mass fraction (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu | 43.19 | 44.20 | 41.81 | 42.14 | 45.3 | 43.19 | 42.02 | 42.52 | 44.49 | 41.17 |
Ag | 0.12 | 0.04 | 0.14 | 0.08 | 0.04 | 0.12 | 0.14 | 0.19 | 0.06 | 0.12 |
Fe | 2.88 | 3.41 | 2.35 | 2.35 | 4.38 | 3.20 | 2.82 | 2.81 | 3.33 | 3.92 |
Zn | 3.32 | 2.77 | 3.80 | 3.92 | 1.93 | 2.98 | 2.73 | 3.10 | 2.82 | 3.74 |
Sb | 17.53 | 9.69 | 19.93 | 19.03 | 3.31 | 18.21 | 22.59 | 17.47 | 5.05 | 18.25 |
As | 8.35 | 13.78 | 6.77 | 7.18 | 18.84 | 9.17 | 5.39 | 8.73 | 17.57 | 7.29 |
S | 25.61 | 27.10 | 26.04 | 25.66 | 27.94 | 25.63 | 25.26 | 25.80 | 26.97 | 25.84 |
Sum | 101.00 | 100.99 | 100.84 | 100.36 | 101.74 | 102.5 | 100.95 | 100.62 | 100.29 | 100.33 |
Elements | Number of atoms | |||||||||
Cu | 10.727 | 10.571 | 10.449 | 10.571 | 10.484 | 10.626 | 10.652 | 10.582 | 10.571 | 10.266 |
Ag | 0.017 | 0.006 | 0.020 | 0.023 | 0.006 | 0.017 | 0.020 | 0.026 | 0.009 | 0.020 |
Fe | 0.815 | 0.928 | 0.670 | 0.670 | 1.151 | 0.896 | 0.812 | 0.798 | 0.896 | 1.114 |
Zn | 0.800 | 0.644 | 0.925 | 0.954 | 0.432 | 0.711 | 0.673 | 0.748 | 0.650 | 0.748 |
Sb | 2.274 | 1.212 | 2.598 | 2.491 | 0.403 | 2.337 | 2.990 | 2.271 | 0.638 | 2.375 |
As | 1.760 | 2.799 | 1.436 | 1.528 | 3.698 | 1.911 | 1.16 | 1.844 | 3.541 | 1.543 |
S | 12.606 | 12.841 | 12.902 | 12.763 | 12.821 | 12.502 | 12.693 | 12.731 | 12.696 | 12.775 |
Fig.4 Reflected-light photomicrographs (a-i) and back-scattering images (j,k) of ore minerals showing the textural relations and the internal structure. (a) Later chalcopyrite (cp) filling up the factures in early pyrite (py), the Rhzavaya vein. (b) Later gold (au) occurring in fractures of pyrite, the Rhzavaya vein. (c) Gold enclosed in chalcopyrite, the Rhzavaya vein. (d) Micrographic texture of exsolution chalcopyrite from bornite, the Rhzavaya vein. Chalcocite forms rims around bornite. (e) Assemblage of chalcopyrite, bornite (bor) and tennantite-tetrahedrite (ten-tet), the Rhzavaya vein. Chalcocite (light blue) replaces bornite along fractures and margins. Chalcocite (light blue) is partly replaced by covelline (dark blue). (f) Sphalerite (sp) intergrown with chalcopyrite, pyrite and galena (ga), the Central vein. (g) A gold inclusion in euhedral pyrite, the Central vein. (h) Euhedral pyrite in contact with gold, the Stockwork ore body. (i) Gold crystals in interstices between carbonate grains, the Yuzhnaya vein. (j,k) Internal zonal structure of tennantite-tetrahedrite solid-solution.
Vein | Mass fraction (%) | Mole fraction (%) | |||
---|---|---|---|---|---|
Au | Ag | ∑ | Au | Ag | |
The Central vein | 80.55 | 19.10 | 99.65 | 69.79 | 30.21 |
80.60 | 19.40 | 100.00 | 69.47 | 30.53 | |
81.69 | 18.30 | 99.99 | 70.97 | 29.03 | |
82.00 | 18.68 | 100.68 | 70.63 | 29.37 | |
82.51 | 17.96 | 100.47 | 71.55 | 28.45 | |
The stockwork | 79.15 | 18.74 | 97.89 | 69.81 | 30.19 |
80.35 | 18.79 | 99.14 | 79.08 | 29.93 | |
78.57 | 18.86 | 97.43 | 69.52 | 30.48 | |
79.48 | 18.72 | 98.20 | 69.92 | 30,08 | |
79.17 | 18.65 | 97.82 | 69.93 | 30.07 | |
The Yuzhnaya vein | 78.87 | 20.00 | 98.87 | 68.76 | 31.24 |
79.76 | 20.43 | 100.19 | 68.85 | 31.25 | |
79.33 | 20.67 | 100.00 | 68.44 | 31.56 | |
80.89 | 19.40 | 100.29 | 69.84 | 30.16 | |
80.73 | 19.71 | 100.45 | 69.42 | 30.58 | |
Gold crystals in voids of the altered host rocks | 78.75 | 18.67 | 97.42 | 69.79 | 30.21 |
79.95 | 20.05 | 100.00 | 68.59 | 31.41 | |
80.90 | 18.17 | 99.07 | 70.92 | 29.08 | |
81.95 | 18.08 | 100.03 | 71.28 | 28.72 | |
94.15 | 6.18 | 100.33 | 89.29 | 10.71 | |
The Rhzavaya vein | 76.84 | 23.16 | 100.00 | 65.50 | 34.50 |
42.90 | 57.10 | 100.00 | 59.21 | 40.79 | |
84.24 | 15.86 | 100.08 | 72.24 | 27.76 |
Table 3 Representative electron microprobe analyses of gold from the Baranevskoye deposit.
Vein | Mass fraction (%) | Mole fraction (%) | |||
---|---|---|---|---|---|
Au | Ag | ∑ | Au | Ag | |
The Central vein | 80.55 | 19.10 | 99.65 | 69.79 | 30.21 |
80.60 | 19.40 | 100.00 | 69.47 | 30.53 | |
81.69 | 18.30 | 99.99 | 70.97 | 29.03 | |
82.00 | 18.68 | 100.68 | 70.63 | 29.37 | |
82.51 | 17.96 | 100.47 | 71.55 | 28.45 | |
The stockwork | 79.15 | 18.74 | 97.89 | 69.81 | 30.19 |
80.35 | 18.79 | 99.14 | 79.08 | 29.93 | |
78.57 | 18.86 | 97.43 | 69.52 | 30.48 | |
79.48 | 18.72 | 98.20 | 69.92 | 30,08 | |
79.17 | 18.65 | 97.82 | 69.93 | 30.07 | |
The Yuzhnaya vein | 78.87 | 20.00 | 98.87 | 68.76 | 31.24 |
79.76 | 20.43 | 100.19 | 68.85 | 31.25 | |
79.33 | 20.67 | 100.00 | 68.44 | 31.56 | |
80.89 | 19.40 | 100.29 | 69.84 | 30.16 | |
80.73 | 19.71 | 100.45 | 69.42 | 30.58 | |
Gold crystals in voids of the altered host rocks | 78.75 | 18.67 | 97.42 | 69.79 | 30.21 |
79.95 | 20.05 | 100.00 | 68.59 | 31.41 | |
80.90 | 18.17 | 99.07 | 70.92 | 29.08 | |
81.95 | 18.08 | 100.03 | 71.28 | 28.72 | |
94.15 | 6.18 | 100.33 | 89.29 | 10.71 | |
The Rhzavaya vein | 76.84 | 23.16 | 100.00 | 65.50 | 34.50 |
42.90 | 57.10 | 100.00 | 59.21 | 40.79 | |
84.24 | 15.86 | 100.08 | 72.24 | 27.76 |
Fig.6 Variety of gold crystals developing in void space of the altered host rocks. (a) Remarkable single octahedron gold crystal with the growth steps on a surface. (b) Dentritic branch of gold crystals. The growth steps are recognized at the surface of individual crystal. (d) The deformed dendritic branch of gold crystals.
Fig.7 Diagrams of gold composition. (a) The Yuznaya vein. (b) The Stockwork ore body. (c) The Central vein. (d) Gold from the host rocks and placer deposit.
Fig.9 Homogenization temperatures obtained from fluid inclusions in quartz from the Central vein (a), the Rhzavaya vein (b), and altered host rocks (c).
Fig.8 Microphotographs of the fluid inclusions from the Central vein. (a) Individual gaseous inclusion in quartz. (b) Group of two phase fluid inclusions.
Fig.11 Plot of homogenization temperature versus salinity for fluid inclusions of the Central vein, Rhzavaya vein, and quartz druses in the altered host rocks.
[1] | ANDREEVA E D, 2006. Textural features of epithermal mineralization of the Zolotoye ore body, Central Kamchatka[J]. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences, 8:195-200. |
[2] | AVDEIKO G P, VOLYNETS O N, ANTONOV A Y, et al., 1991. Kurile Island arc volcanism: structural and petrological aspects[J]. Tectonophysics, 199:271-287. |
[3] |
BINDEMAN I N, LEONOV V L, IZBEKOV P E, et al., 2010. Large-volume silicic volcanism in Kamchatka: Ar-Ar and U-Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions[J]. Journal of Volcanology and Geothermal Research, 189:57-80.
DOI URL |
[4] | BRETT R, YUND R A, 1964. Sulfur-rich bornite[J]. American Mineralogist, 49:1084-1089. |
[5] | BOLSHAKOV V M, FLOROV A I, MINEEV S D, et al., 2010. Geological structure of the Baranevskoe gold ore deposits (Central Kamchatka)[J]. Otechestvenaya Geologiya, 4:15-22 (in Russian). |
[6] | EINAUDI M T, HEDENQUIST J W, INAN E E, 2003. Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments[J]. Economic Geology Special Publication, 10:1-50. |
[7] | FADDA S, FIORI M, GRILLO S M, 2005. Chemical variations in tetrahedrite-tennantite minerals from the Furtei epithermal Au deposit, Sardinia, Italy: mineral zoning and ore fluid evolution[J]. Geochemistry, Mineralogy and Petrology: 79-84. |
[8] |
FEISS P G, 1974. Reconnaissance of the tetrahedrite-tennantite/enargite-famatinite phase relations as a possible geothermometer[J]. Economic Geology, 69:383-390.
DOI URL |
[9] | FILIMONOV S V, 2009. Tetrahedrite-tennantite group minerals as indicators of ore genesis on the hydrothermal deposits[D]. Moscow: MSU: 26. |
[10] |
HEALD P, FOLEY N K, HAYBA D O, 1987. Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types[J]. Economic Geology, 82:1-26.
DOI URL |
[11] |
HEDENQUIST J W, HENLEY R W, 1985. The importance of CO2 on freezing point measurements of fluid inclusion: evidence from active geothermal systems and implications for epithermal ore deposition[J]. Economic Geology, 80:1379-1406.
DOI URL |
[12] | HERNANDEZ A N G, AKASAKA M, 2010. Ag-rich tetrahedrite in the El Zancudo deposit, Colombia: occurrence, chemical compositions and genetic temperatures[J]. Resource Geology, 60:218-234. |
[13] |
IMAI A, SATOSHI O, 2005. Primary ore mineral assemblage and fluid inclusion study of the BatuHijau Porphyry Cu-Au deposit, Sumbawa, Indonesia[J]. Resource Geology, 55:239-248.
DOI URL |
[14] |
KEMKINA R A, 2007. Fahlores of the Prasolovka Au-Ag volcanogenic deposit, Kunashir island, Russian Far East[J]. Russian Journal of Pacific Geology, 1:130-143.
DOI URL |
[15] | KHASANOV S G, SIDORENKO V I, KRIKUN V I, et al., 2015. Explanatory notes to the map of the Khangar seria[J]. VSEGII: 143. |
[16] | KUZHUGET R V, MONGUSH A A, MONGUSH A O, 2018. Evolution of chemical composition of fahlores of the Ak-Sug gold-molybdenum-copper-porphyry deposit (North-East Tuva)[J]. Bulletin of the Tomsk Polytechnic University, 329:81-91. |
[17] |
MASKE S, SKINNER B J, 1971. Studies of the sulfosalts of copper I. Phase and phase relations in the system, Cu-As-S[J]. Economic Geology, 66:901-918.
DOI URL |
[18] | MELEKESTSEV I V, 2009. The identification and diagnostics of active and potentially active volcanic features in the Kuril-Kamchatka island arc and the Commander islands link of the Aleutian arc[J]. Journal of Volcanology and Seismology, 4:221-245. |
[19] | OKRUGIN V M, 2001. Age and genesis of epithermal deposits located along north-west coast of the Pacific Ocean[M]// Magmatism and metallogeny in continental margins along the Pacific Ocean. [S.l.]:[s.n.]: 39-41 (in Russian). |
[20] | PETRENKO I D, 1999. Gold-silver mineralization in Kamchatka[J]. VSEGII: 115. |
[21] | PEVZNER M M, VOLYNEC A O, 2006. Holocene volcanism in Sredinny Range, Kamchatka[C]// Proceeding of the International Symposium Explosive Volcanism Issues. [S.l.]:[s.n.]: 127-134. |
[22] | PONOMAREVA V, MELEKESTSEV I, BRAITSEVA O, et al., 2007. Late Pleistocene-Holocene volcanism on the Kamchatka Peninsula, Northwest Pacific region. Volcanism and subduction: the Kamchatka Region[J]. Geophysical Monograph Series, 172:165-198. |
[23] | ROEDDER E, 1984. Fluid inclusions[J]. Reviews in Mineralogy, 12:646. |
[24] | SHADRIN A G, 1999. Epithermal precious metal mineralization in Kamchatka[J]. Geology and Mineral Resources of Kamchatka: 74-77 (in Russian). |
[25] | SHEPOTEV Y M, VARTANYAN S S, ORESHIN V Y, et al., 1989. Gold deposits in the volcanic arcs of the Pacific Ocean[M]. Moscow: [s.n.]: 244. |
[26] |
SIMMONS S F, CHRISTENSON B W, 1994. Origins of calcite in a boiling geothermal system[J]. American Journal of Science, 294:361-400.
DOI URL |
[27] |
SIMMONS S F, AREHART G, SIMPSON M P, et al., 2000. Origin of massive calcite veins in the Golden Cross low-sulfidation, epithermal Au-Ag deposit, New Zealand[J]. Economic Geology, 95:99-112.
DOI URL |
[28] | STEPANOV V A, KUNGUROVA V E, KOIDAN I A, 2019. Gold mineralization of the Median Massif, Kamchatka (Kamchatka Sredinnyi Massif)[J]. Proceedings of Higher Educational Establishments. Geology and Exploration, 2:44-53(in Russian). |
[29] | SPIRIDONOV E, MALEEV M, KOVACHEV V, et al., 2005. Minerals of fahlore group: indictors of ore genesis[M]. Sofia: Bulgarian Geological Society: 79-82. |
[30] | TATSUKA K, MORIMOTO N, 1973. Composition variation and polymorphism of tetrahedrite in the Cu-Sb-S system below 400 ℃[J]. American Mineralogist, 58:425-434. |
[31] |
VOLYNEC O, 1991. Geochemical types, petrology, and genesis of Late Cenozoic volcanic rocks from the Kurile-Kamchatka island-arc system[J]. International Geology Review, 36:373-405.
DOI URL |
[32] | WHITE N C, HEDENQUIST J, 1995. Epithermal gold deposits: styles, characteristics and exploration[J]. SEG Newsletter, 2:1-13. |
[1] | 翟裕生. 试论矿床成因的基本模型[J]. 地学前缘, 20140101, 21(1): 1-8. |
[2] | 严丽萍, 谢先明, 汤振华. 基于物质来源解析的汕头市土壤重金属环境容量研究[J]. 地学前缘, 2024, 31(4): 403-416. |
[3] | 王岩, 王登红, 王成辉, 黎华, 刘金宇, 孙赫, 高新宇, 金雅楠, 秦燕, 黄凡. 基于地质大数据的中国金矿时空分布规律定量研究[J]. 地学前缘, 2024, 31(4): 438-455. |
[4] | 曹胜桃, 胡瑞忠, 周永章, 刘建中, 谭亲平, 高伟, 郑禄林, 郑禄璟, 宋威方. 基于大数据关联规则算法的卡林型金矿床元素富集规律及找矿方法研究[J]. 地学前缘, 2024, 31(4): 58-72. |
[5] | 张前龙, 周永章, 郭兰萱, 原桂强, 虞鹏鹏, 王汉雨, 朱彪彪, 韩枫, 龙师尧. 找矿知识图谱的智能化应用:以钦杭成矿带斑岩铜矿为例[J]. 地学前缘, 2024, 31(4): 7-15. |
[6] | 李方兰, 刘学龙, 周云满, 赵成峰, 李守奎, 王基元, 陆波德, 李庆锐, 张卫文, 王海, 曹振梁, 周杰虎. 滇西保山地块陡崖铁铜多金属矿床石榴子石年代学及其地球化学特征[J]. 地学前缘, 2024, 31(3): 113-132. |
[7] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[8] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[9] | 陈可, 邵拥军, 刘忠法, 张俊柯, 李永顺, 陈雨莹. 岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘, 2024, 31(3): 199-217. |
[10] | 何进忠, 丁振举, 朱永新, 甄红旭, 张万仁, 刘杰. 甘肃西秦岭矿床成矿系列及其量化评价[J]. 地学前缘, 2024, 31(3): 218-234. |
[11] | 王岩, 秦燕, 黎华, 王登红, 孙赫, 王成辉, 黄凡. 东北地区金矿成矿规律及找矿方向[J]. 地学前缘, 2024, 31(3): 235-244. |
[12] | 张爱奎, 袁万明, 刘光莲, 张勇, 汪周鑫, 孙非非, 刘智刚. 柴达木盆地周缘战略性金属矿产成矿规律与勘查方向[J]. 地学前缘, 2024, 31(3): 260-283. |
[13] | 涂春霖, 和成忠, 马一奇, 尹林虎, 陶兰初, 杨明花. 珠江流域沉积物重金属污染特征、生态风险及来源解析[J]. 地学前缘, 2024, 31(3): 410-419. |
[14] | 刘海, 魏伟, 宋阳, 潘杨, 李迎春. 霍邱县城湖泊沉积物重金属污染特征、潜在生态风险及来源[J]. 地学前缘, 2024, 31(3): 420-431. |
[15] | 李杉杉, 张荣, 费杨, 梁家辉, 杨兵, 王萌, 师华定, 陈世宝. Fe对稻田土壤重金属迁移转化影响机制及研究进展[J]. 地学前缘, 2024, 31(2): 103-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||