Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (3): 402-409.DOI: 10.13745/j.esf.sf.2023.2.82
Previous Articles Next Articles
LÜ Lianghua1,2,3(), WANG Shui1,3
Received:
2023-01-17
Revised:
2023-04-11
Online:
2024-05-25
Published:
2024-05-25
CLC Number:
LÜ Lianghua, WANG Shui. Quantitative analysis of scaling tendency of karstic geothermal water coupled with CO2 degassing[J]. Earth Science Frontiers, 2024, 31(3): 402-409.
样品 编号 | 水样 类型 | 井深/ m | 井口温度/ ℃ | pH | 电导率/ (μS·cm-1) | TDS浓度/ (mg·L-1) | |
---|---|---|---|---|---|---|---|
W1 | 地热水 | 336 | 48.3 | 7.1 | 2 490 | 1 335.3 | |
W2 | 地热水 | 2 005 | 40.1 | 8.0 | 2 113 | 1 376.0 | |
W3 | 地热水 | 230 | 64.3 | 7.2 | 3 190 | 1 575.0 | |
W4 | 地热水 | 200 | 35.1 | 7.7 | 1 344 | 713.3 | |
W5 | 地热水 | 306.5 | 64.7 | 7.4 | 3 140 | 1 580.2 | |
W6 | 地热水 | 280 | 34.1 | 7.2 | 1 823 | 1 132.0 | |
W7 | 地热水 | 230 | 65.3 | 7.6 | 3 110 | 1 538.5 |
Table 1 Physical and chemical parameters of geothermal water samples
样品 编号 | 水样 类型 | 井深/ m | 井口温度/ ℃ | pH | 电导率/ (μS·cm-1) | TDS浓度/ (mg·L-1) | |
---|---|---|---|---|---|---|---|
W1 | 地热水 | 336 | 48.3 | 7.1 | 2 490 | 1 335.3 | |
W2 | 地热水 | 2 005 | 40.1 | 8.0 | 2 113 | 1 376.0 | |
W3 | 地热水 | 230 | 64.3 | 7.2 | 3 190 | 1 575.0 | |
W4 | 地热水 | 200 | 35.1 | 7.7 | 1 344 | 713.3 | |
W5 | 地热水 | 306.5 | 64.7 | 7.4 | 3 140 | 1 580.2 | |
W6 | 地热水 | 280 | 34.1 | 7.2 | 1 823 | 1 132.0 | |
W7 | 地热水 | 230 | 65.3 | 7.6 | 3 110 | 1 538.5 |
样品 编号 | 主量组分浓度/(mg·L-1) | 相对误差 E/% | 水化学类型 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Na | K | Mg | Ca | Cl | NO3 | SO4 | HCO3 | CO3 | |||
W1 | 15.5 | 8.3 | 53.3 | 317.5 | 15.8 | 1.5 | 838.5 | 166.2 | 0.0 | 1.1 | SO4-Ca |
W2 | 20.0 | 10.9 | 56.1 | 296.7 | 15.9 | 4.8 | 918.6 | 102.5 | 0.0 | -1.9 | SO4-Ca |
W3 | 18.7 | 11.0 | 60.1 | 378.0 | 30.5 | 0.3 | 1 002.9 | 141.4 | 0.0 | 1.6 | SO4-Ca |
W4 | 15.7 | 4.3 | 27.8 | 185.2 | 19.8 | 3.7 | 319.8 | 270.5 | 0.0 | 2.4 | SO4·HCO3-Ca |
W5 | 17.6 | 10.9 | 60.4 | 380.4 | 24.6 | 5.1 | 1 012.9 | 130.8 | 0.0 | 1.9 | SO4-Ca |
W6 | 12.1 | 4.6 | 48.3 | 278.6 | 8.2 | 15.6 | 635.8 | 254.6 | 0.0 | 1.7 | SO4-Ca |
W7 | 17.2 | 10.4 | 58.2 | 360.3 | 23.6 | 8.7 | 966.1 | 182.1 | 0.0 | -0.4 | SO4-Ca |
Table 2 Major component content of geothermal water samples
样品 编号 | 主量组分浓度/(mg·L-1) | 相对误差 E/% | 水化学类型 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Na | K | Mg | Ca | Cl | NO3 | SO4 | HCO3 | CO3 | |||
W1 | 15.5 | 8.3 | 53.3 | 317.5 | 15.8 | 1.5 | 838.5 | 166.2 | 0.0 | 1.1 | SO4-Ca |
W2 | 20.0 | 10.9 | 56.1 | 296.7 | 15.9 | 4.8 | 918.6 | 102.5 | 0.0 | -1.9 | SO4-Ca |
W3 | 18.7 | 11.0 | 60.1 | 378.0 | 30.5 | 0.3 | 1 002.9 | 141.4 | 0.0 | 1.6 | SO4-Ca |
W4 | 15.7 | 4.3 | 27.8 | 185.2 | 19.8 | 3.7 | 319.8 | 270.5 | 0.0 | 2.4 | SO4·HCO3-Ca |
W5 | 17.6 | 10.9 | 60.4 | 380.4 | 24.6 | 5.1 | 1 012.9 | 130.8 | 0.0 | 1.9 | SO4-Ca |
W6 | 12.1 | 4.6 | 48.3 | 278.6 | 8.2 | 15.6 | 635.8 | 254.6 | 0.0 | 1.7 | SO4-Ca |
W7 | 17.2 | 10.4 | 58.2 | 360.3 | 23.6 | 8.7 | 966.1 | 182.1 | 0.0 | -0.4 | SO4-Ca |
深度/ m | 温度/ ℃ | 压力/ bar | CO2 脱气量/ (mol·kg-1) | CaCO3 结垢量/ (g·L-1) | BaSO4 结垢量/ (g·L-1) | CaSO4 结垢量/ (g·L-1) |
---|---|---|---|---|---|---|
0 | 48.3 | 1.0 | 0.038 8 | 0.041 4 | 4.16E-05 | |
20 | 49.8 | 3.0 | 0.054 4 | 4.27E-05 | ||
40 | 51.4 | 6.0 | 0.050 2 | 4.49E-05 | ||
60 | 52.9 | 9.0 | 0.046 1 | 4.67E-05 | ||
80 | 54.4 | 12.0 | 0.042 6 | 4.82E-05 | ||
100 | 56.0 | 15.0 | 0.039 3 | 4.94E-05 | ||
120 | 57.5 | 18.0 | 0.036 4 | 5.05E-05 | ||
140 | 59.0 | 21.0 | 0.033 6 | 5.13E-05 | ||
160 | 60.5 | 24.0 | 0.031 2 | 5.21E-05 | ||
180 | 62.1 | 27.0 | 0.029 | 5.27E-05 | ||
200 | 63.6 | 30.0 | 0.026 9 | 5.33E-05 | ||
220 | 65.1 | 33.0 | 0.025 1 | 5.38E-05 | ||
240 | 66.7 | 36.0 | 0.023 4 | 5.40E-05 | ||
260 | 68.2 | 39.0 | 0.021 9 | 5.41E-05 | 0.089 9 | |
280 | 69.7 | 42.0 | 0.020 5 | 5.42E-05 | 0.134 7 | |
300 | 71.3 | 45.0 | 0.019 3 | 5.43E-05 | 0.176 4 | |
320 | 72.8 | 48.0 | 0.014 6 | 5.44E-05 | 0.215 5 | |
336 | 74.0 | 50.4 | — | 5.44E-05 | 0.244 9 |
Table 3 Modeling results of carbonate and sulfate scaling trends in Well W1
深度/ m | 温度/ ℃ | 压力/ bar | CO2 脱气量/ (mol·kg-1) | CaCO3 结垢量/ (g·L-1) | BaSO4 结垢量/ (g·L-1) | CaSO4 结垢量/ (g·L-1) |
---|---|---|---|---|---|---|
0 | 48.3 | 1.0 | 0.038 8 | 0.041 4 | 4.16E-05 | |
20 | 49.8 | 3.0 | 0.054 4 | 4.27E-05 | ||
40 | 51.4 | 6.0 | 0.050 2 | 4.49E-05 | ||
60 | 52.9 | 9.0 | 0.046 1 | 4.67E-05 | ||
80 | 54.4 | 12.0 | 0.042 6 | 4.82E-05 | ||
100 | 56.0 | 15.0 | 0.039 3 | 4.94E-05 | ||
120 | 57.5 | 18.0 | 0.036 4 | 5.05E-05 | ||
140 | 59.0 | 21.0 | 0.033 6 | 5.13E-05 | ||
160 | 60.5 | 24.0 | 0.031 2 | 5.21E-05 | ||
180 | 62.1 | 27.0 | 0.029 | 5.27E-05 | ||
200 | 63.6 | 30.0 | 0.026 9 | 5.33E-05 | ||
220 | 65.1 | 33.0 | 0.025 1 | 5.38E-05 | ||
240 | 66.7 | 36.0 | 0.023 4 | 5.40E-05 | ||
260 | 68.2 | 39.0 | 0.021 9 | 5.41E-05 | 0.089 9 | |
280 | 69.7 | 42.0 | 0.020 5 | 5.42E-05 | 0.134 7 | |
300 | 71.3 | 45.0 | 0.019 3 | 5.43E-05 | 0.176 4 | |
320 | 72.8 | 48.0 | 0.014 6 | 5.44E-05 | 0.215 5 | |
336 | 74.0 | 50.4 | — | 5.44E-05 | 0.244 9 |
深度/ m | 温度/ ℃ | 压力/ bar | CO2 脱气量 (mol· kg-1) | CaCO3 结垢量/ (g·L-1) | BaSO4 结垢量/ (g·L-1) | CaSO4 结垢量/ (g·L-1) | CaSO4· 2H2O 结垢量/ (g·L-1) |
---|---|---|---|---|---|---|---|
0 | 40.1 | 1.0 | 0.294 4 | 0.015 8 | 5.66E-05 | ||
100 | 42.3 | 15.0 | 0.244 2 | 6.55E-05 | |||
200 | 44.5 | 30.0 | 0.184 5 | 6.96E-05 | |||
300 | 46.7 | 45.0 | 0.136 6 | 7.14E-05 | |||
400 | 48.9 | 60.0 | 0.098 7 | 7.22E-05 | 0.057 8 | ||
500 | 51.1 | 75.0 | 0.068 7 | 7.26E-05 | 0.143 5 | ||
600 | 53.2 | 90.0 | 0.067 1 | 7.28E-05 | 0.213 6 | ||
700 | 55.4 | 105.0 | 0.011 1 | 7.30E-05 | 0.277 6 | ||
800 | 57.6 | 120.0 | 0.011 4 | 7.28E-05 | 0.299 7 | ||
900 | 59.8 | 135.0 | 0.012 | 7.27E-05 | 0.322 0 | ||
1 000 | 62.0 | 150.0 | 0.012 4 | 7.26E-05 | 0.344 6 | ||
1 100 | 64.2 | 165.0 | 0.012 9 | 7.25E-05 | 0.367 3 | ||
1 200 | 66.4 | 180.0 | 0.017 9 | 7.24E-05 | 0.390 0 | ||
1 300 | 68.6 | 195.0 | 0.012 1 | 7.23E-05 | 0.415 4 | ||
1 400 | 70.8 | 210.0 | 0.012 2 | 7.22E-05 | 0.437 0 | ||
1 500 | 73.0 | 225.0 | 0.012 6 | 7.21E-05 | 0.458 4 | ||
1 600 | 75.1 | 240.0 | 0.013 1 | 7.20E-05 | 0.479 6 | ||
1 700 | 77.3 | 255.0 | 0.013 7 | 7.19E-05 | 0.500 6 | ||
1 800 | 79.5 | 270.0 | 0.014 4 | 7.18E-05 | 0.521 4 | ||
1 900 | 81.7 | 285.0 | 0.015 1 | 7.17E-05 | 0.542 1 | ||
2 000 | 83.9 | 300.0 | 0.000 8 | 7.16E-05 | 0.562 5 | ||
2 005 | 84.0 | 300.8 | — | 7.16E-05 | 0.563 4 |
Table 4 Modeling results of carbonate and sulfate scaling trends in Well W2
深度/ m | 温度/ ℃ | 压力/ bar | CO2 脱气量 (mol· kg-1) | CaCO3 结垢量/ (g·L-1) | BaSO4 结垢量/ (g·L-1) | CaSO4 结垢量/ (g·L-1) | CaSO4· 2H2O 结垢量/ (g·L-1) |
---|---|---|---|---|---|---|---|
0 | 40.1 | 1.0 | 0.294 4 | 0.015 8 | 5.66E-05 | ||
100 | 42.3 | 15.0 | 0.244 2 | 6.55E-05 | |||
200 | 44.5 | 30.0 | 0.184 5 | 6.96E-05 | |||
300 | 46.7 | 45.0 | 0.136 6 | 7.14E-05 | |||
400 | 48.9 | 60.0 | 0.098 7 | 7.22E-05 | 0.057 8 | ||
500 | 51.1 | 75.0 | 0.068 7 | 7.26E-05 | 0.143 5 | ||
600 | 53.2 | 90.0 | 0.067 1 | 7.28E-05 | 0.213 6 | ||
700 | 55.4 | 105.0 | 0.011 1 | 7.30E-05 | 0.277 6 | ||
800 | 57.6 | 120.0 | 0.011 4 | 7.28E-05 | 0.299 7 | ||
900 | 59.8 | 135.0 | 0.012 | 7.27E-05 | 0.322 0 | ||
1 000 | 62.0 | 150.0 | 0.012 4 | 7.26E-05 | 0.344 6 | ||
1 100 | 64.2 | 165.0 | 0.012 9 | 7.25E-05 | 0.367 3 | ||
1 200 | 66.4 | 180.0 | 0.017 9 | 7.24E-05 | 0.390 0 | ||
1 300 | 68.6 | 195.0 | 0.012 1 | 7.23E-05 | 0.415 4 | ||
1 400 | 70.8 | 210.0 | 0.012 2 | 7.22E-05 | 0.437 0 | ||
1 500 | 73.0 | 225.0 | 0.012 6 | 7.21E-05 | 0.458 4 | ||
1 600 | 75.1 | 240.0 | 0.013 1 | 7.20E-05 | 0.479 6 | ||
1 700 | 77.3 | 255.0 | 0.013 7 | 7.19E-05 | 0.500 6 | ||
1 800 | 79.5 | 270.0 | 0.014 4 | 7.18E-05 | 0.521 4 | ||
1 900 | 81.7 | 285.0 | 0.015 1 | 7.17E-05 | 0.542 1 | ||
2 000 | 83.9 | 300.0 | 0.000 8 | 7.16E-05 | 0.562 5 | ||
2 005 | 84.0 | 300.8 | — | 7.16E-05 | 0.563 4 |
深度/ m | 温度/ ℃ | 压力/ bar | CO2 脱气量 (mol· kg-1) | CaCO3 结垢量/ (g·L-1) | BaSO4 结垢量/ (g·L-1) | CaSO4 结垢量/ (g·L-1) | CaSO4· 2H2O 结垢量/ (g·L-1) |
---|---|---|---|---|---|---|---|
0 | 64.7 | 1.0 | 0.030 3 | 0.040 0 | 5.12E-05 | 0.004 9 | |
20 | 66.2 | 3.0 | 0.043 2 | 5.23E-05 | 0.003 6 | ||
40 | 67.6 | 6.0 | 0.040 5 | 5.44E-05 | 0.001 8 | ||
60 | 69.1 | 9.0 | 0.038 1 | 5.62E-05 | 0.000 1 | 0.005 3 | |
80 | 70.5 | 12.0 | 0.035 7 | 5.73E-05 | 0.081 7 | ||
100 | 72.0 | 15.0 | 0.033 5 | 5.82E-05 | 0.151 0 | ||
120 | 73.4 | 18.0 | 0.031 7 | 5.90E-05 | 0.212 0 | ||
140 | 74.9 | 21.0 | 0.029 8 | 5.97E-05 | 0.272 0 | ||
160 | 76.3 | 24.0 | 0.028 2 | 6.03E-05 | 0.325 1 | ||
180 | 77.8 | 27.0 | 0.026 6 | 6.08E-05 | 0.374 1 | ||
200 | 79.3 | 30.0 | 0.025 2 | 6.12E-05 | 0.419 5 | ||
220 | 80.7 | 33.0 | 0.024 | 6.17E-05 | 0.461 6 | ||
240 | 82.2 | 36.0 | 0.022 7 | 6.20E-05 | 0.500 8 | ||
260 | 83.6 | 39.0 | 0.020 8 | 6.23E-05 | 0.537 3 | ||
280 | 85.1 | 42.0 | 0.021 6 | 6.26E-05 | 0.571 0 | ||
300 | 86.5 | 45.0 | 0.005 9 | 6.29E-05 | 0.603 8 | ||
306 | 87.0 | 45.9 | — | 6.29E-05 | 0.613 3 |
Table 5 Modeling results of carbonate and sulfate scaling trends in Well W5
深度/ m | 温度/ ℃ | 压力/ bar | CO2 脱气量 (mol· kg-1) | CaCO3 结垢量/ (g·L-1) | BaSO4 结垢量/ (g·L-1) | CaSO4 结垢量/ (g·L-1) | CaSO4· 2H2O 结垢量/ (g·L-1) |
---|---|---|---|---|---|---|---|
0 | 64.7 | 1.0 | 0.030 3 | 0.040 0 | 5.12E-05 | 0.004 9 | |
20 | 66.2 | 3.0 | 0.043 2 | 5.23E-05 | 0.003 6 | ||
40 | 67.6 | 6.0 | 0.040 5 | 5.44E-05 | 0.001 8 | ||
60 | 69.1 | 9.0 | 0.038 1 | 5.62E-05 | 0.000 1 | 0.005 3 | |
80 | 70.5 | 12.0 | 0.035 7 | 5.73E-05 | 0.081 7 | ||
100 | 72.0 | 15.0 | 0.033 5 | 5.82E-05 | 0.151 0 | ||
120 | 73.4 | 18.0 | 0.031 7 | 5.90E-05 | 0.212 0 | ||
140 | 74.9 | 21.0 | 0.029 8 | 5.97E-05 | 0.272 0 | ||
160 | 76.3 | 24.0 | 0.028 2 | 6.03E-05 | 0.325 1 | ||
180 | 77.8 | 27.0 | 0.026 6 | 6.08E-05 | 0.374 1 | ||
200 | 79.3 | 30.0 | 0.025 2 | 6.12E-05 | 0.419 5 | ||
220 | 80.7 | 33.0 | 0.024 | 6.17E-05 | 0.461 6 | ||
240 | 82.2 | 36.0 | 0.022 7 | 6.20E-05 | 0.500 8 | ||
260 | 83.6 | 39.0 | 0.020 8 | 6.23E-05 | 0.537 3 | ||
280 | 85.1 | 42.0 | 0.021 6 | 6.26E-05 | 0.571 0 | ||
300 | 86.5 | 45.0 | 0.005 9 | 6.29E-05 | 0.603 8 | ||
306 | 87.0 | 45.9 | — | 6.29E-05 | 0.613 3 |
深度/ m | 温度/ ℃ | 压力/ bar | CO2脱气量/ (mol·kg-1) | CaCO3 结垢量/ (g·L-1) | BaSO4 结垢量/ (g·L-1) |
---|---|---|---|---|---|
0 | 34.1 | 1 | 0.051 2 | 0.060 9 | 2.14E-05 |
20 | 35.3 | 3 | 0.071 8 | 2.28E-05 | |
40 | 36.5 | 6 | 0.065 8 | 2.55E-05 | |
60 | 37.7 | 9 | 0.060 3 | 2.75E-05 | |
80 | 38.9 | 12 | 0.055 2 | 2.92E-05 | |
100 | 40.1 | 15 | 0.050 7 | 3.05E-05 | |
120 | 41.3 | 18 | 0.046 5 | 3.15E-05 | |
140 | 42.5 | 21 | 0.042 7 | 3.24E-05 | |
160 | 43.8 | 24 | 0.039 1 | 3.31E-05 | |
180 | 45.0 | 27 | 0.035 9 | 3.37E-05 | |
200 | 46.2 | 30 | 0.033 | 3.42E-05 | |
220 | 47.4 | 33 | 0.030 3 | 3.46E-05 | |
240 | 48.6 | 36 | 0.027 8 | 3.54E-05 | |
260 | 49.8 | 39 | 0.025 5 | 3.89E-05 | |
280 | 51.0 | 42 | — | 3.55E-05 |
Table 6 Modeling results of carbonate and sulfate scaling trends in Well W6
深度/ m | 温度/ ℃ | 压力/ bar | CO2脱气量/ (mol·kg-1) | CaCO3 结垢量/ (g·L-1) | BaSO4 结垢量/ (g·L-1) |
---|---|---|---|---|---|
0 | 34.1 | 1 | 0.051 2 | 0.060 9 | 2.14E-05 |
20 | 35.3 | 3 | 0.071 8 | 2.28E-05 | |
40 | 36.5 | 6 | 0.065 8 | 2.55E-05 | |
60 | 37.7 | 9 | 0.060 3 | 2.75E-05 | |
80 | 38.9 | 12 | 0.055 2 | 2.92E-05 | |
100 | 40.1 | 15 | 0.050 7 | 3.05E-05 | |
120 | 41.3 | 18 | 0.046 5 | 3.15E-05 | |
140 | 42.5 | 21 | 0.042 7 | 3.24E-05 | |
160 | 43.8 | 24 | 0.039 1 | 3.31E-05 | |
180 | 45.0 | 27 | 0.035 9 | 3.37E-05 | |
200 | 46.2 | 30 | 0.033 | 3.42E-05 | |
220 | 47.4 | 33 | 0.030 3 | 3.46E-05 | |
240 | 48.6 | 36 | 0.027 8 | 3.54E-05 | |
260 | 49.8 | 39 | 0.025 5 | 3.89E-05 | |
280 | 51.0 | 42 | — | 3.55E-05 |
[1] | 庞忠和, 孔彦龙, 庞菊梅, 等. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 2017, 32(11): 1224-1230. |
[2] | KONG Y L, PANG Z H, SHAO H B, et al. Recent studies on hydrothermal systems in China: a review[J]. Geothermal Energy, 2014, 2(1): 19. |
[3] | MICHAEL K, GOLAB A, SHULAKOVA V, et al. Geological storage of CO2 in saline aquifers: a review of the experience from existing storage operations[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 659-667. |
[4] | 庞菊梅, 庞忠和, 孔彦龙, 等. 岩溶热储井间连通性的示踪研究[J]. 地质科学, 2014, 49(3): 915-923. |
[5] | MONTANARI D, MINISSALE A, DOVERI M, et al. Geothermal resources within carbonate reservoirs in western Sicily (Italy): a review[J]. Earth-Science Reviews, 2017, 169: 180-201. |
[6] | 庞忠和, 胡圣标, 汪集旸. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32): 18-24. |
[7] |
刘金侠, 毛翔, 季汉成, 等. 东濮凹陷奥陶系岩溶型热储分布特征及成因研究[J]. 地学前缘, 2017, 24(3): 180-189.
DOI |
[8] | 王延欣, 刘世良, 边庆玉, 等. 甘孜地热井结垢分析及防垢对策[J]. 新能源进展, 2015, 3(3): 202-206. |
[9] | ÇELIK A, TOPÇU G, BABA A, et al. Experimental modeling of silicate-based geothermal deposits[J]. Geothermics, 2017, 69: 65-73. |
[10] | IKEDA R, UEDA A. Experimental field investigations of inhibitors for controlling silica scale in geothermal brine at the Sumikawa geothermal plant, Akita Prefecture, Japan[J]. Geothermics, 2017, 70: 305-313. |
[11] | NITSCHKE F, HELD S, HIMMELSBACH T, et al. THC simulation of halite scaling in deep geothermal single well production[J]. Geothermics, 2017, 65: 234-243. |
[12] | 余琴, 杨平恒, 程群, 等. 重庆主城区钻井地热水结垢及腐蚀趋势研究[J]. 西南大学学报(自然科学版), 2017, 39(10): 95-101. |
[13] | PAUWELS J, SALAH S, VASILE M, et al. Characterization of scaling material obtained from the geothermal power plant of the Balmatt site, Mol[J]. Geothermics, 2021, 94: 102090. |
[14] |
何雨江, 刘肖, 邢林啸, 等. 河北保定岩溶地热结垢过程模拟及防垢对策[J]. 地学前缘, 2022, 29(4): 430-437.
DOI |
[15] | 于湲, 周训, 方斌. 北京城区地下热水结垢趋势的判断和分析[J]. 城市地质, 2007, 2(2): 14-18. |
[16] | BOZAU E, HÄUßLER S,VAN BERK W. Hydrogeochemical modelling of corrosion effects and barite scaling in deep geothermal wells of the North German Basin using PHREEQC and PHAST[J]. Geothermics, 2015, 53: 540-547. |
[17] | MROCZEK E, GRAHAM D, SIEGA C, et al. Silica scaling in cooled silica saturated geothermal water: comparison between Wairakei and Ohaaki geothermal fields, New Zealand[J]. Geothermics, 2017, 69: 145-152. |
[18] | BOZAU E, VAN BERK W. Hydrogeochemical modeling of deep formation water applied to geothermal energy production[J]. Procedia Earth and Planetary Science, 2013, 7: 97-100. |
[19] | HENLEY R W. pH and silica scaling control in geothermal field development[J]. Geothermics, 1983, 12(4): 307-321. |
[20] | GARCÍA A V, THOMSEN K, STENBY E H. Prediction of mineral scale formation in geothermal and oilfield operations using the extended UNIQUAC model[J]. Geothermics, 2005, 34(1): 61-97. |
[21] | GARCÍA A V, THOMSEN K, STENBY E H. Prediction of mineral scale formation in geothermal and oilfield operations using the Extended UNIQUAC model[J]. Geothermics, 2006, 35(3): 239-284. |
[22] | LI Y M, PANG Z H, GALECZKA I M. Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of Eastern Himalayan Syntax[J]. Geothermics, 2020, 87: 101844. |
[23] | 刘明言. 地热流体的腐蚀与结垢控制现状[J]. 新能源进展, 2015, 3(1): 38-46. |
[24] | TARCAN G. Mineral saturation and scaling tendencies of waters discharged from wells (>150 ℃) in geothermal areas of Turkey[J]. Journal of Volcanology and Geothermal Research, 2005, 142(3/4): 263-283. |
[25] | 朱家玲, 姚涛. 地热水腐蚀结垢趋势的判断和计算[J]. 工业用水与废水, 2004, 35(2): 23-25. |
[26] | SONG J C, LIU M Y, SUN X X. Model analysis and experimental study on scaling and corrosion tendencies of aerated geothermal water[J]. Geothermics, 2020, 85: 101766. |
[27] | DIAMOND L W, ALT-EPPING P. Predictive modelling of mineral scaling, corrosion and the performance of solute geothermometers in a granitoid-hosted, enhanced geothermal system[J]. Applied Geochemistry, 2014, 51: 216-228. |
[28] | HUSSAIN A, KHOSHNEVIS N, MEULENBROEK B, et al. Modelling mineral-scaling in geothermal reservoirs using both a local equilibrium and a kinetics approach[C/OL]. 2021[2023-04-11]. https://doi.org/10.5194/egusphere-egu21-16033. |
[29] | DEMIR M M, BABA A, ATILLA V, et al. Types of the scaling in hyper saline geothermal system in northwest Turkey[J]. Geothermics, 2014, 50: 1-9. |
[30] | LARSON T E, SOLLO F W. Loss in water main carrying capacity[J]. Journal of American Water Works Association, 1967, 59(12): 1565-1572. |
[31] | RYZNAR J W. A new index for determining amount of calcium scale formed by a water[J]. Journal of American Water Works Association, 1944, 36(4): 472486. |
[32] | LANGELIER W F. Chemical equilibria in water treatment[J]. Journal AWWA, 1946, 38(2): 169-178. |
[33] | RIDDICK T M. The mechanism of corrosion of water pipes[J]. Water Sewage Works, 1944, 91: 133-138. |
[34] | PANG Z H, REED M. Theoretical chemical thermometry on geothermal waters: problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 1083-1091. |
[35] | 李义曼, 庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展, 2018, 6(4): 274-281. |
[36] | 徐成华, 于丹丹. 汤山地热水补给及受轨道交通工程的影响[J]. 水资源保护, 2018, 34(3): 57-61. |
[37] | LU L H, PANG Z H, KONG Y L, et al. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development[J]. Hydrogeology Journal, 2018, 26(5): 1705-1719. |
[38] | HASHEMI S H, DINMOHAMMAD M, BAGHERI M. Optimization of extended UNIQUAC model parameter for mean activity coefficient of aqueous chloride solutions using Genetic+PSO[J]. Journal of Chemical and Petroleum Engineering, 2020, 54(1): 1-12. |
[39] | THOMSEN K, ILIUTA M C, RASMUSSEN P. Extended UNIQUAC model for correlation and prediction of vapor-liquid-liquid-solid equilibria in aqueous salt systems containing non-electrolytes. Part B. Alcohol (ethanol, propanols, butanols)-water-salt systems[J]. Chemical Engineering Science, 2004, 59(17): 3631-3647. |
[40] | HASHEMI S H, DINMOHAMMAD M, MOUSAVI DEHGHANI S A. Thermodynamic prediction of Ba and Sr sulfates scale formation in water flooding projects in oil reservoirs[J]. Journal of Mineral Resources Engineering, 2019, 4(2): 23-37. |
[41] | REED M, SPYCHER N, PALANDRI J. SOLVEQ-XPT: A computer program for computing aqueous-mineral-gas equilibria[R/OL]. 2016[2023-04-11]. https://pages.uoregon.edu/palandri/data/solveq-xpt%20guide_v.2.23.pdf. |
[42] | DUAN Z H, SUN R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology, 2003, 193(3/4): 257-271. |
[43] | DUAN Z H, SUN R, ZHU C, et al. An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42-[J]. Marine Chemistry, 2006, 98(2/3/4): 131-139. |
[44] | GUNNARSSON I, ARNÓRSSON S. Impact of silica scaling on the efficiency of heat extraction from high-temperature geothermal fluids[J]. Geothermics, 2005, 34(3): 320-329. |
[1] | DAI Chuanshan, LIU Dongxi, LI Jiashu, LEI Haiyan, CHEN Shuhuan, CHEN Qianhan, WANG Qilong. Single-well in-situ heat extraction technology—a review and perspectives [J]. Earth Science Frontiers, 2024, 31(6): 204-214. |
[2] | YANG Ke-Min, HU Beng, DANG Xiao-Chun. A discussion on the generating mechanism of 1976 Tangshan earthquake based on the geologic structure of northern Huabei Basin. [J]. Earth Science Frontiers, 2010, 17(5): 263-270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||