Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 265-274.DOI: 10.13745/j.esf.sf.2021.9.28
Previous Articles Next Articles
JI Chunsheng1(), JIA Yonggang1,2,*(
), ZHU Junjiang3,4, HU Naili1, FAN Zhihan1, HU Cong1, FENG Xuezhi1, YU Heyu1, LIU Bo5
Received:
2021-07-25
Revised:
2021-12-08
Online:
2022-09-25
Published:
2022-08-24
Contact:
JIA Yonggang
CLC Number:
JI Chunsheng, JIA Yonggang, ZHU Junjiang, HU Naili, FAN Zhihan, HU Cong, FENG Xuezhi, YU Heyu, LIU Bo. R&D and application of the Abyssal Bottom Boundary Layer Observation System (ABBLOS)[J]. Earth Science Frontiers, 2022, 29(5): 265-274.
技术参数 | 参数说明 |
---|---|
尺寸 | 整体长×宽×高为3.5 m×3.5 m×2.7 m;其中上部框架高1.5 m,宽1.7 m;底部支撑架净空为1 m |
空气质量 | 总质量1 450 kg,上部框架质量1 020 kg(包括所有仪器);下部支撑架及配重共430 kg |
水下荷载 | 水下总质量210 kg(包括所有仪器),浮球使用数量为20个,共计提供508 kg*g(N)的浮力 |
抛重方式 | 通过抛弃下部支撑架获得正浮力,上部框架在水中的浮力为108 kg*g(N),通过船上甲板单元发送释放指令 |
持续工作时间 | ≥30天 |
耐压 | 6 700 m水深(实际最大耐压深度取决于搭载设备) |
Table 1 Design index of carrier platform
技术参数 | 参数说明 |
---|---|
尺寸 | 整体长×宽×高为3.5 m×3.5 m×2.7 m;其中上部框架高1.5 m,宽1.7 m;底部支撑架净空为1 m |
空气质量 | 总质量1 450 kg,上部框架质量1 020 kg(包括所有仪器);下部支撑架及配重共430 kg |
水下荷载 | 水下总质量210 kg(包括所有仪器),浮球使用数量为20个,共计提供508 kg*g(N)的浮力 |
抛重方式 | 通过抛弃下部支撑架获得正浮力,上部框架在水中的浮力为108 kg*g(N),通过船上甲板单元发送释放指令 |
持续工作时间 | ≥30天 |
耐压 | 6 700 m水深(实际最大耐压深度取决于搭载设备) |
编号 | 设备名称 | 厂家/型号 | 主要功能 |
---|---|---|---|
1 | 声学释放器 | 美国Benthos/ R12K Acoustic Release | 释放运载平台的配重,配合甲板单元完成设备自主上浮回收 |
2 | 75k-ADCP | 美国TRDI/ WHS 75kHz | 观测内孤立波等海洋动力过程 |
3 | 多参数快速剖面仪 | 加拿大RBR/ RBRmaestro3C.T.D.Tu.DO.ORP | 观测温度、盐度、压力、浊度、溶解氧和氧化还原电位等参数 |
4 | 高精度压力计 | 美国Paroscientific/ 43K-101 | 观测海底边界层的高精度水压变化 |
5 | 甲烷传感器 | 德国Franatech/ METS titanium | 观测海底边界层海水溶解甲烷浓度变化 |
6 | 高频ADCP | 挪威Nortek/ Aquapro HR 2 MHz | 观测海底边界层高分辨率的剖面流速结构 |
7 | ADV | 挪威Nortek/ Vector Velocimeter DW 6 MHz | 共两台,观测海底边界层高精度单点流速 |
8 | 海底摄像机 | 中国科学院西安光学精密机械研究所/自研 | 记录海底边界层视频信息,捕捉海底甲烷渗漏过程 |
9 | 玻璃浮球 | 美国Teledyne Benthos/ Sphere Model 2040-17 V | 提供运载平台的浮力 |
Table 2 Basic information of observation instrument
编号 | 设备名称 | 厂家/型号 | 主要功能 |
---|---|---|---|
1 | 声学释放器 | 美国Benthos/ R12K Acoustic Release | 释放运载平台的配重,配合甲板单元完成设备自主上浮回收 |
2 | 75k-ADCP | 美国TRDI/ WHS 75kHz | 观测内孤立波等海洋动力过程 |
3 | 多参数快速剖面仪 | 加拿大RBR/ RBRmaestro3C.T.D.Tu.DO.ORP | 观测温度、盐度、压力、浊度、溶解氧和氧化还原电位等参数 |
4 | 高精度压力计 | 美国Paroscientific/ 43K-101 | 观测海底边界层的高精度水压变化 |
5 | 甲烷传感器 | 德国Franatech/ METS titanium | 观测海底边界层海水溶解甲烷浓度变化 |
6 | 高频ADCP | 挪威Nortek/ Aquapro HR 2 MHz | 观测海底边界层高分辨率的剖面流速结构 |
7 | ADV | 挪威Nortek/ Vector Velocimeter DW 6 MHz | 共两台,观测海底边界层高精度单点流速 |
8 | 海底摄像机 | 中国科学院西安光学精密机械研究所/自研 | 记录海底边界层视频信息,捕捉海底甲烷渗漏过程 |
9 | 玻璃浮球 | 美国Teledyne Benthos/ Sphere Model 2040-17 V | 提供运载平台的浮力 |
编号 | 仪器(设备)名称 | 观测参数设置 |
---|---|---|
1 | 75k-ADCP | 剖面单元层厚16 m,共37层,垂向剖面约600 m;采集频率1 min/次,15 ping |
2 | 快速多参数剖面仪 | 采集频率1/20 Hz |
3 | 高精度压力计 | 采集频率1/5 Hz |
4 | 甲烷传感器 | 采集频率1/5 Hz |
5 | 高频ADCP | 剖面单元10 mm,99层,有效剖面1.0 m;连续采集,采集频率30 s/次 |
6 | ADV | 俯视仰视各1台,连续采集,采集频率64 Hz |
7 | 海底摄像机 | 工作周期3 min,每个周期内录像5 s |
Table 3 Setting of working parameters of integrated observation instrument
编号 | 仪器(设备)名称 | 观测参数设置 |
---|---|---|
1 | 75k-ADCP | 剖面单元层厚16 m,共37层,垂向剖面约600 m;采集频率1 min/次,15 ping |
2 | 快速多参数剖面仪 | 采集频率1/20 Hz |
3 | 高精度压力计 | 采集频率1/5 Hz |
4 | 甲烷传感器 | 采集频率1/5 Hz |
5 | 高频ADCP | 剖面单元10 mm,99层,有效剖面1.0 m;连续采集,采集频率30 s/次 |
6 | ADV | 俯视仰视各1台,连续采集,采集频率64 Hz |
7 | 海底摄像机 | 工作周期3 min,每个周期内录像5 s |
[1] | LUECK R, LAURRENT L S, MOUM J N. Turbulence in the benthic boundary layer[J]. Encyclopedia of Ocean Sciences, 2001, 265(1322):3057-3063. |
[2] | GIBBSR J. Suspended solids in water[M]. Boston, MA: Springer US, 1974. |
[3] |
MCKEE B A, ALLER R C, ALLISON M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24(7/8): 899-926.
DOI URL |
[4] | HIR P L, BASSOULLET P, JESTIN H. Application of the continuous modeling concept to simulate high-concentration suspended sediment in a macrotidal estuary[J]. Proceedings in Marine Science, 2000, 3: 229-247. |
[5] |
KLEMAS V. Remote sensing of ocean internal waves: an overview[J]. Journal of Coastal Research, 2012, 282: 540-546.
DOI URL |
[6] |
HELFRICH K R, MELVILLE W K. Long nonlinear internal waves[J]. Annual Review of Fluid Mechanics, 2006, 38: 395-425.
DOI URL |
[7] | JAN S, CHEN C T A. Potential biogeochemical effects from vigorous internal tides generated in Luzon Strait: a case study at the southernmost coast of Taiwan[J]. Journal of Geophysical Research: Oceans, 2009, 114(C4): C04021. |
[8] |
RYAN J P, MCMANUS M A, SULLIVAN J M. Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California[J]. Continental Shelf Research, 2010, 30(1): 7-16.
DOI URL |
[9] |
HUANG X, CHEN Z, ZHAO W, et al. An extreme internal solitary wave event observed in the northern South China Sea[J]. Scientific Reports, 2016, 6: 30041.
DOI URL |
[10] | LIANG C R, SHANG X D, CHEN G Y. The vertical heat transport of internal solitary waves over the continental slope in the northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(3): 36-44. |
[11] |
RICHARDS C, BOURGAULT D, GALBRAITH P S, et al. Measurements of shoaling internal waves and turbulence in an estuary[J]. Journal of Geophysical Research: Oceans, 2013, 118(1): 273-286.
DOI URL |
[12] |
MASUNAGA E, HOMMA H, YAMAZAKI H, et al. Mixing and sediment resuspension associated with internal bores in a shallow bay[J]. Continental Shelf Research, 2015, 110: 85-99.
DOI URL |
[13] |
THOMAS J A, LERCZAK J A, MOUM J N. Horizontal variability of high-frequency nonlinear internal waves in Massachusetts Bay detected by an array of seafloor pressure sensors[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 5587-5607.
DOI URL |
[14] |
MOUM J N, SMYTH W D. The pressure disturbance of a nonlinear internal wave train[J]. Journal of Fluid Mechanics, 2006, 558: 153-177.
DOI URL |
[15] |
MOUM J N, NASH J D. Seafloor pressure measurements of nonlinear internal waves[J]. Journal of Physical Oceanography, 2008, 38(2): 481-491.
DOI URL |
[16] |
JIA Y, TIAN Z, SHI X, et al. Deep-sea sediment resuspension by internal solitary waves in the northern South China Sea[J]. Scientific Reports, 2019, 9(1): 12137.
DOI URL |
[17] |
CHEN C Y, HSU J R C. Interaction between internal waves and a permeable seabed[J]. Ocean Engineering, 2005, 32(5/6): 587-621.
DOI URL |
[18] |
孙启良, 解习农, 吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 2021, 28(2): 258-270.
DOI |
[19] |
REEDER D B, MA B B, YANG Y J. Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves[J]. Marine Geology, 2011, 279(1/2/3/4): 12-18.
DOI URL |
[20] |
夏华永, 刘愉强, 杨阳. 南海北部沙波区海底强流的内波特征及其对沙波运动的影响[J]. 热带海洋学报, 2009, 28(6): 15-22.
DOI |
[21] |
SMITH K L JR, GLATTS R C, BALDWIN R J, et al. An autonomous, bottom-transecting vehicle for making long time-series measurements of sediment community oxygen consumption to abyssal depths[J]. Limnology and Oceanography, 1997, 42(7): 1601-1612.
DOI URL |
[22] |
TENGBERG A, BOVEE F, HALL P, et al. Benthic chamber and profiling landers in oceanography: a review of design, technical solutions and functioning[J]. Progress In Oceanography, 1995, 35: 253-294.
DOI URL |
[23] |
LAMBRIGTSEN B, BROWN S, GAIER T, et al. Monitoring the hydrologic cycle with the path mission[J]. Proceedings of the IEEE. 2010, 98: 862-877
DOI URL |
[24] | PFANNKUCHE O, LINKE P. GEOMAR landers as long-term deep-sea observatories applications and developments of lander technology in operational oceanography[J]. Sea Technology, 2003, 44(9): 50, 52-55. |
[25] | 徐如彦, 沈宁, 倪佐涛, 等. 自升式连体潜标测量系统的设计与实施[J]. 海洋科学, 2014, 38(12): 94-98. |
[26] | 赵广涛, 于新生, 李欣, 等. Benvir: 一个深海海底边界层原位监测装置[J]. 高技术通讯, 2015, 25(1): 54-60. |
[27] | 胡刚, 赵铁虎, 章雪挺, 等. 天然气水合物赋存区近海底环境原位观测系统集成与实现[J]. 海洋地质前沿, 2015, 31(6): 30-35. |
[28] | 董一飞, 罗文造, 梁前勇, 等. 坐底式潜标观测系统及其在天然气水合物区的试验性应用[J]. 海洋地质与第四纪地质, 2017, 37(5): 195-203. |
[29] | LIEN R C. Energy of nonlinear internal waves in the South China Sea[J]. Geophysical Research Letters, 2005, 32(5): L05615. |
[30] |
CAI S Q, XIE J S, HE J L. An overview of internal solitary waves in the South China Sea[J]. Surveys in Geophysics, 2012, 33(5): 927-943.
DOI URL |
[31] | 孙丽娜, 张杰, 孟俊敏. 基于遥感与现场观测数据的南海北部内波传播速度[J]. 海洋与湖沼, 2018, 49(3): 471-480. |
[32] |
ALFORD M H, PEACOCK T, MACKINNON J A, et al. Corrigendum: the formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7550): 65-69.
DOI URL |
[33] |
BAI X L. Observations of high-frequency internal waves in the southern Taiwan Strait[J]. Journal of Coastal Research, 2013, 29(6): 1413-1419.
DOI URL |
[1] | ZHANG Yiheng, ZHANG Tao, YONG Yuanyuan, YU Chiyang, XIAO Juyue, HE Kaiyue, WANG Deng, WANG Xing, WANG Bin, YANG Xiaoguang, HAN Jian. Effect of boundary layer on simulation of benthic microfossils in coastal seabed [J]. Earth Science Frontiers, 2024, 31(2): 410-422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||