Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (4): 340-354.DOI: 10.13745/j.esf.sf.2019.8.21
FU Xiaohui1,2(), LING Zongcheng1, ZHOU Qin2, Bradley L.JOLLIFF3, YIN Qingzhu4, WANG Alian3, LI Bo1, WU Zhongchen1, ZHANG Jiang1
Received:
2018-07-20
Revised:
2019-03-20
Online:
2020-07-25
Published:
2020-07-25
CLC Number:
FU Xiaohui, LING Zongcheng, ZHOU Qin, Bradley L.JOLLIFF, YIN Qingzhu, WANG Alian, LI Bo, WU Zhongchen, ZHANG Jiang. Alteration minerals in Martian surface rocks: a comparative study of Martian meteorites and in-situ exploration in the Gale crater[J]. Earth Science Frontiers, 2020, 27(4): 340-354.
样品 | wB/% | 资料来源 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | TiO2 | Cr2O3 | MgO | MnO | CaO | FeO | NiO | Na2O | K2O | P2O5 | Cl | SO3 | Total | ||
NWA7034熔壳 | 47.49 | 10.81 | 1.03 | — | 10.68 | 0.5 | 7.38 | 17.52 | — | 2.34 | 0.42 | 1.73 | — | — | 99.9 | 本研究 |
NWA7034 全岩 | 47.55 | 11.21 | 0.98 | 0.18 | 7.81 | 0.28 | 8.93 | 13 | 0.05 | 3.74 | 0.34 | 0.76 | 0.22 | 0.1 | 95.11 | 据文献[ |
NWA7475全岩 | 48.3 | 10.7 | 1.02 | 0.26 | 10.9 | 0.36 | 7.04 | 16.6 | — | 2.8 | 0.47 | 1.29 | — | 0.07 | 99.81 | 据文献[ |
NWA7533 CLIMR | 45.7 | 10.31 | 1.13 | — | 11.9 | 0.38 | 6.72 | 19.09 | — | 2.69 | 0.43 | 1.56 | — | — | 99.91 | 据文献[ |
MIL03346全岩 | 49.2 | 3.59 | 0.07 | 0.13 | 9.33 | 0.45 | 15 | 19.23 | 0.06 | 1.01 | 0.29 | 0.22 | — | — | 98.58 | 据文献[ |
MIL03346全岩 | 49.5 | 4.09 | 0.68 | 0.19 | 9.26 | 0.46 | 14.4 | 19.1 | — | 0.96 | 0.2 | 0.23 | — | 0.06 | 99.2 | 据文献[ |
John Klein | 42.07 | 8.67 | 0.97 | 0.42 | 9.06 | 0.27 | 7.76 | 19.86 | — | 3.01 | 0.57 | 0.93 | 0.56 | 5.61 | 99.76 | NASA PDS |
Cumberland | 43.02 | 8.57 | 0.97 | 0.43 | 9.41 | 0.27 | 6.29 | 22.35 | — | 2.98 | 0.5 | 0.95 | 1.39 | 2.57 | 99.7 | NASA PDS |
Table 1 Chemical compositions of Martian meteorite NWA7034,MIL 03346 and Sheepbed mudstone
样品 | wB/% | 资料来源 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | TiO2 | Cr2O3 | MgO | MnO | CaO | FeO | NiO | Na2O | K2O | P2O5 | Cl | SO3 | Total | ||
NWA7034熔壳 | 47.49 | 10.81 | 1.03 | — | 10.68 | 0.5 | 7.38 | 17.52 | — | 2.34 | 0.42 | 1.73 | — | — | 99.9 | 本研究 |
NWA7034 全岩 | 47.55 | 11.21 | 0.98 | 0.18 | 7.81 | 0.28 | 8.93 | 13 | 0.05 | 3.74 | 0.34 | 0.76 | 0.22 | 0.1 | 95.11 | 据文献[ |
NWA7475全岩 | 48.3 | 10.7 | 1.02 | 0.26 | 10.9 | 0.36 | 7.04 | 16.6 | — | 2.8 | 0.47 | 1.29 | — | 0.07 | 99.81 | 据文献[ |
NWA7533 CLIMR | 45.7 | 10.31 | 1.13 | — | 11.9 | 0.38 | 6.72 | 19.09 | — | 2.69 | 0.43 | 1.56 | — | — | 99.91 | 据文献[ |
MIL03346全岩 | 49.2 | 3.59 | 0.07 | 0.13 | 9.33 | 0.45 | 15 | 19.23 | 0.06 | 1.01 | 0.29 | 0.22 | — | — | 98.58 | 据文献[ |
MIL03346全岩 | 49.5 | 4.09 | 0.68 | 0.19 | 9.26 | 0.46 | 14.4 | 19.1 | — | 0.96 | 0.2 | 0.23 | — | 0.06 | 99.2 | 据文献[ |
John Klein | 42.07 | 8.67 | 0.97 | 0.42 | 9.06 | 0.27 | 7.76 | 19.86 | — | 3.01 | 0.57 | 0.93 | 0.56 | 5.61 | 99.76 | NASA PDS |
Cumberland | 43.02 | 8.57 | 0.97 | 0.43 | 9.41 | 0.27 | 6.29 | 22.35 | — | 2.98 | 0.5 | 0.95 | 1.39 | 2.57 | 99.7 | NASA PDS |
Fig.1 Total alkali versus silica diagram of Martian meteorites and Sheepbed mudstone. Modified from [9,32], and Martian meteorites data shown in Table 1.
样品 | wB/% | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
透长石 | 斜长石 | 铁橄榄石 | 普通辉石 | 易变辉石 | 斜方辉石 | 磁铁矿 | 硬石膏 | 烧石膏 | 石英 | 赤铁矿 | 钛铁矿 | 四方纤铁矿 | 石盐 | 黄铁矿 | 磁黄铁矿 | 蒙皂石 | 非晶质相 | ||
John Klein | 1.2 | 22.4 | 2.8 | 3.8 | 5.6 | 3 | 3.8 | 2.6 | 1 | 0.4 | 0.6 | 0.7 | 1.1 | 0.1 | 0.3 | 1 | 22 | 28 | |
Cumberland | 1.6 | 22.2 | 0.9 | 4.1 | 8 | 4.1 | 4.4 | 0.8 | 0.7 | 0.1 | 0.7 | 0.5 | 1.7 | 0.1 | 1 | 18 | 31 |
Table 2 Crystalline and amorphous components of the John Klein and Cumberland drill powders[23]
样品 | wB/% | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
透长石 | 斜长石 | 铁橄榄石 | 普通辉石 | 易变辉石 | 斜方辉石 | 磁铁矿 | 硬石膏 | 烧石膏 | 石英 | 赤铁矿 | 钛铁矿 | 四方纤铁矿 | 石盐 | 黄铁矿 | 磁黄铁矿 | 蒙皂石 | 非晶质相 | ||
John Klein | 1.2 | 22.4 | 2.8 | 3.8 | 5.6 | 3 | 3.8 | 2.6 | 1 | 0.4 | 0.6 | 0.7 | 1.1 | 0.1 | 0.3 | 1 | 22 | 28 | |
Cumberland | 1.6 | 22.2 | 0.9 | 4.1 | 8 | 4.1 | 4.4 | 0.8 | 0.7 | 0.1 | 0.7 | 0.5 | 1.7 | 0.1 | 1 | 18 | 31 |
矿物类型 | 矿物名称 | MIL03346 | NWA7034 | Sheepbed |
---|---|---|---|---|
含水硅酸盐 | Fe/Mg蒙脱石 | √ | √ | √ |
伊丁石 | √ | |||
水合二氧化硅 | √ | |||
铁氧化物和 氢氧化物 | 赤铁矿 | √ | √ | √ |
磁铁矿 | √ | √ | √ | |
水铁矿 | √ | √ | √ | |
四方纤铁矿 | √ | √ | ||
硫酸盐 | 石膏 | √ | √ | |
烧石膏 | √ | √ | ||
γ-CaSO4 | √ | |||
黄钾铁矾 | √ | √ | ||
碳酸盐 | 方解石 | |||
菱铁矿 | ||||
氯化物 | 氯盐 | √ | √ | |
高氯酸盐 | ||||
弱结晶相 | √ | √ |
Table 3 Comparison of alteration mineralogy in NWA7034, MIL03346, and Sheepbed mudstone
矿物类型 | 矿物名称 | MIL03346 | NWA7034 | Sheepbed |
---|---|---|---|---|
含水硅酸盐 | Fe/Mg蒙脱石 | √ | √ | √ |
伊丁石 | √ | |||
水合二氧化硅 | √ | |||
铁氧化物和 氢氧化物 | 赤铁矿 | √ | √ | √ |
磁铁矿 | √ | √ | √ | |
水铁矿 | √ | √ | √ | |
四方纤铁矿 | √ | √ | ||
硫酸盐 | 石膏 | √ | √ | |
烧石膏 | √ | √ | ||
γ-CaSO4 | √ | |||
黄钾铁矾 | √ | √ | ||
碳酸盐 | 方解石 | |||
菱铁矿 | ||||
氯化物 | 氯盐 | √ | √ | |
高氯酸盐 | ||||
弱结晶相 | √ | √ |
Fig.8 Major element compositions of Martian meteorites and Sheepbed mudstones plotted as molar proportions on an Al2O3-(CaO+Na2O+K2O)-(FeO+MgO) ternary diagram
[1] | HUBBARD G S, NADER F M I, GARVIN J B. Following the water, the new program for Mars exploration[J]. Acta Astronautica, 2002, 511:337-350. |
[2] | CARR M H. The surface of Mars[M]. Cambridge: Cambridge University Press, 2007. |
[3] | CLIFFORD S M, PARKER T J. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains[J]. Icarus, 2001, 1541:40-79. |
[4] | HARRISON K P, ROBERT E G. Groundwater-controlled valley networks and the decline of surface runoff on early Mars[J]. Journal of Geophysical Research: Planets, 2005, 110:1-17. |
[5] | BELL J III. The Martian surface: composition, mineralogy, and physical properties[M]. Cambridge: Cambridge University Press, 2008. |
[6] | TOKANO T. Water on Mars and life[M]. Berlin: Springer, 2005: 65-96. |
[7] | EHLMANN B L, EDWARDS C S. Mineralogy of the martian surface[J]. Annual Review of Earth and Planetary Sciences, 2014, 421:291-315. |
[8] | BIBRING J P, LANGEVIN Y, MUSTARD J F, et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data[J]. Science, 2006, 312(5772):400-404. |
[9] | MCSWEEN H Y. Petrology on Mars[J]. American Mineralogist, 2015, 1000(11/12):2380-2395. |
[10] |
HU S, LIN Y, ZHANG J, et al. NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: hydrogen isotope evidence for recent past underground hydrothermal activity on Mars[J]. Geochimica et Cosmochimica Acta, 2014, 140:321-333.
DOI URL |
[11] | LIN Y, EL GORESY A, HU S, et al. NanoSIMS analysis of organic carbon from the Tissint martian meteorite: evidence for the past existence of subsurface organic-bearing fluids on Mars[J]. Meteoritics & Planetary Science, 2014, 4912:2201-2218. |
[12] |
MCKAY D S, GIBSON E K, THOMAS-KEPRTA K L, et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001[J]. Science, 1996, 273(5277):924-930.
DOI URL |
[13] |
MCSWEEN H Y. SNC meteorites: are they Martian rocks?[J]. Geology, 1984, 12(1):3-6.
DOI URL |
[14] |
TREIMAN A H, GLEASON J D, BOGARD D D. The SNC meteorites are from Mars[J]. Planetary and Space Science, 2000, 48(12):1213-1230.
DOI URL |
[15] | 付晓辉, 欧阳自远, 邹永廖. 太阳系生命信息探测[J]. 地学前缘, 2014, 21(1):1-17. |
[16] | 杨晶, 林杨挺, 欧阳自远. 地外有机化合物[J]. 地学前缘, 2014, 21(6):165-187. |
[17] | BRIDGES J C, CATLING D C. SAXTON J M, et al. Chronology and evolution of Mars[M]. Dordrecht: Springer, 2001. |
[18] | VELBEL M A. Sedimentary geology of Mars[M]. SEPM Society for Sedimentary Geology, 2012. |
[19] | TREIMAN A H. The Nakhlite meteorites: augite-rich igneous rocks from Mars[J]. Chemie der Erde-Geochemistry, 2005, 65(3):203-270. |
[20] | CHANGELA H G, BRIDGES C J. Alteration assemblages in the Nakhlites: variation with depth on Mars[J]. Meteoritics & Planetary Science, 2011, 45(12):1847-1867. |
[21] |
AGEE C B, WILSON N V, MCCUBBIN F M, et al. Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034[J]. Science, 2013, 339(6121):780-785.
DOI URL |
[22] |
MUTTIK N, MCCUBBIN F M, LINDSAY P, et al. Inventory of H2O in the ancient martian regolith from Northwest Africa 7034: the important role of Fe oxides[J]. Geophysical Research Letters, 2014, 41(23):8235-8244.
DOI URL |
[23] |
VANIMAN D T, BISH D L, MING D W, et al. Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars[J]. Science, 2014, 343(6169):1243480. DOI: 10.1126/science.1243480.
DOI URL |
[24] | MING D W, ARCHER JR P D, GLAVIN D P, et al. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars[J]. Science, 2014, 343(6169):1-9. |
[25] |
SUTTER B, MCADAM A C, MAHAFFY P R, ET AL. Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune[J]. Journal of Geophysical Research: Planets, 2017, 122(12):2574-2609.
DOI URL |
[26] | FU X H, ZHOU Q, LING Z C, et al. Alteration mineralogy in martian regolith breccia Northwest Africa 7034 using Raman Spectroscopy[C]// Proceedings of the 49th Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2018: 2083. |
[27] |
LING Z C, WANG A L. Spatial distributions of secondary minerals in the martian meteorite MIL 03346, 168 determined by Raman spectroscopic imaging[J]. Journal of Geophysical Research: Planets, 2015, 120(6):1141-1159.
DOI URL |
[28] | WITTMANN A, KOROTEV R L, JOLLIFF B L, et al. Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7455[J]. Meteoritics & Planetary Science, 2015, 50(2):326-352. |
[29] |
HUMAYUN M, NEMCHIN A, ZANDA B, et al. Origin and age of the earliest Martian crust from meteorite NWA 7533[J]. Nature, 2013, 503(7477):513-516.
DOI URL |
[30] | DAY J M, TAYLOR L A, FLOSS C, et al. Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of Nakhlites on Mars[J]. Meteoritics & Planetary Science, 2006, 41(4):581-606. |
[31] | IMAE N, AND IKEDA Y. Petrology of the Miller Range 03346 nakhlite in comparison with the Yamato000593 nakhlite[J]. Meteoritics & Planetary Science, 2007, 42(2):171-184. |
[32] |
MCSWEEN H Y, TAYLOR G J, WYATT M B. Elemental composition of the martian crust[J]. Science, 2009, 324(5928):736-739.
DOI URL |
[33] | MCCUBBIN F M, BOYCE J W, NOVAK-SZABO T, et al. Geologic history of martian regolith breccia Northwest Africa 7034: evidence for hydrothermal activity and lithologic diversity in the Martian crust[J]. Journal of Geophysical Research: Planets, 2016, 121(10):2120-2149. |
[34] | YIN Q Z, MCCUBBIN F M, ZHOU Q, et al. An Earth-like beginning for ancient Mars indicated by alkali-rich volcanism at 4.4 Ga[C]// Proceedings of the 45th Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2014: 1320. |
[35] |
CARTWRIGHT J A, HERRMANN U S, AGEE C B. Modern atmospheric signatures in 4.4 Ga martian meteorite NWA 7034[J]. Earth and Planetary Science Letters, 2014, 400:77-87.
DOI URL |
[36] |
LIU Y, MA C, BECKETT J R, et al. Rare-earth-element minerals in Martian breccia meteorites NWA 7034 and 7533: implications for fluid-rock interaction in the Martian crust[J]. Earth and Planetary Science Letters, 2016, 451:251-262.
DOI URL |
[37] | CASSATA W S, COHEN B E, MARK D F, et al. Chronology of Martian breccia NWA7034 and the formation of the Martian crustal dichotomy[J]. Science Advances, 2018, 4(5):8306. |
[38] |
TREIMAN A H. The parent magma of the Nakhla SNC meteorite, inferred from magmatic inclusions[J]. Geochimica et Cosmochimica Acta, 1993, 57(19):4753-4767.
DOI URL |
[39] | MIKOUCHI T, MIYAMOTO M, KOIZUMI E, et al. Relative burial depths of Nakhlites: an update[C]// Proceedings of the 37th Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2006: 1865. |
[40] | DYAR M D, TREIMAN H A, PIETERS M C, et al. MIL03346, the most oxidized Martian meteorite: a first look at spectroscopy, petrography, and mineral chemistry[J]. Journal of Geophysical Research: Planets, 2005, 110:1-9. |
[41] | HAMMER J E, RUTHERFORD M J. Experimental crystallization of Fe-rich basalt: application to cooling rate and oxygen fugacity of nakhlite MIL03346[C]// Proceedings of the 36th Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2005: 1999. |
[42] |
GROTZINGER J P, SUMMER D Y, KAH L C, et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars[J]. Science, 2014, 343(6169):1242777. DOI: 10.1126/science.1242777.
DOI URL |
[43] | PALUCIS M C, WILLIAM E D, ALEXANDER G H, et al. The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars[J]. Journal of Geophysical Research: Planets, 2014, 1194:705-728. |
[44] |
MCLENNAN S M, ANDERSON R B, BELL J F, et al. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale Crater, Mars[J] Science, 2014, 343(6169):1244734. DOI: 10.1126/science.1244734.
DOI URL |
[45] | LORAND J P, HEWIN R H, REMUSAT L, et al. Nickeliferous pyrite tracks pervasive hydrothermal alteration in Martian regolith breccia: a study in NWA 7533[J]. Meteoritics & Planetary Science, 2015, 50(12):2099-2120. |
[46] | ANAND M, WILLIAMS C T, RUSSELL S S, et al. Petrology and geochemistry of Nakhlite MIL 03346: a new Martian meteorite from Antarctica[C]// Proceedings of the 36th Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2005: 1639. |
[47] | HALLIS L J, TAYLOR G J. Comparisons of the four Miller Range nakhlites, MIL 03346, 090030, 090032 and 090136: textural and compositional observations of primary and secondary mineral assemblages[J]. Meteoritics & Planetary Science, 2011, 46(12):1787-1803. |
[48] |
STOPAR J D, TAYLOR G J, VELBEL M A, et al. Element abundances, patterns, and mobility in Nakhlite Miller Range 03346 and implications for aqueous alteration[J]. Geochimica et Cosmochimica Acta, 2013, 112(3):208-225.
DOI URL |
[49] |
MCCUBBIN F M, TOSCA N J, SMIRNOV A, et al. Hydrothermal jarosite and hematite in a pyroxene-hosted melt inclusion in Martian meteorite Miller Range MIL 03346: implications for magmatic-hydrothermal fluids on Mars[J]. Geochimica et Cosmochimica Acta, 2009, 73(16):4907-4917.
DOI URL |
[50] |
NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299:715-717.
DOI URL |
[51] | 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4):539-544. |
[52] | MCLENNAN S M, HEMMING S, MCDANIEL D K, et al. Processes controlling the composition of clastic sediments[M]. Virginia: Geological Society of America, 1994. |
[53] |
NESBITT H W, YOUNG G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2):129-147.
DOI URL |
[54] |
NESBITT H W, WILSON R E. Recent chemical weathering of basalts[J]. American Journal of Science, 1992, 292(10):740-777.
DOI URL |
[55] |
CLOUTIS E A. Styles of aqueous alteration on Mars[J]. American Mineralogist, 2016, 101(9):1925-1926.
DOI URL |
[56] |
EHLMANN B L, MUSTARD J F, MURCHIE S L, et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 2011, 479:53-60.
DOI URL |
[57] | EHLMANN B L, BERGER G, MANGOLD N, et al. Geochemical consequences of widespread clay mineral formation in Mars' ancient crust[J]. Space Science Reviews, 2013, 174(1):329-364. |
[58] |
BISHOP J L, FAIRÉN A G, MICHALSKI J R, et al. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars[J]. Nature Astronomy, 2018, 2(3):206-213.
DOI URL |
[59] |
BRISTOW T F, BISH D L, VANIMAN D T, et al. The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars[J]. American Mineralogist, 2015, 100(4):824-836.
DOI URL |
[60] | BRISTOW T F, RAMPE E B, ACHILLES C N, et al. Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars[J]. Science Advances, 2018, 4(6):1-6. |
[61] |
TREIMAN A H, MORRIS R V, AGRESTI D G, et al. Ferrian saponite from the Santa Monica Mountains, California, U S A, Earth: characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater[J]. American Mineralogist, 2014, 99(11/12):2234-2250.
DOI URL |
[62] |
FRIEDLANDER L R, GLOTCH D T, BISH L, et al. Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPa[J]. Journal of Geophysical Research: Planets, 2014, 120(5):888-912.
DOI URL |
[63] |
MICHALSKI JR, GLOTCH D T, FRIEDLANDER R L, et al. Shock metamorphism of clay minerals on Mars by meteor impact[J]. Geophysical Research Letters, 2017, 44(13):6562-6569.
DOI URL |
[64] | CHE C, GLOTCH D T, BISH L, et al. Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals[J]. Journal of Geophysical Research: Planets, 2011, 116:E5. |
[65] |
GAVIN P, CHEVRIER V. Thermal alteration of nontronite and montmorillonite: implications for the Martian surface[J]. Icarus, 2000, 208(2):721-734.
DOI URL |
[66] | GAVIN P, CHEVRIER V, NINAGAWA A, et al. Experimental investigation into the effects of meteoritic impacts on the spectral properties of phyllosilicates on Mars[J]. Journal of Geophysical Research: Planets, 2013, 1181:65-80. |
[67] |
CHEMTOB S M, NICKERSON R D, MORRIS R V, et al. Synjournal and structural characterization of ferrous trioctahedral smectites: implications for clay mineral genesis and detectability on Mars[J]. Journal of Geophysical Research: Planets, 2015, 120(6):1119-1140.
DOI URL |
[68] |
CHIO C H, SHARMA S K, MUENOW D W. Micro-Raman studies of gypsum in the temperature range between 9 K and 373 K[J]. American Mineralogist, 2004, 89(2/3):390-395.
DOI URL |
[69] |
ROBERTSON K, BISH D. Constraints on the distribution of CaSO4·nH2O phases on Mars and implications for their contribution to the hydrological cycle[J]. Icarus, 2013, 223(1):407-417.
DOI URL |
[70] |
LANGEVIN Y, POULET F, BIBRING J P, et al. Sulfates in the north polar region of Mars detected by OMEGA/Mars Express[J]. Science, 2005, 307(5715):1584-1586.
DOI URL |
[71] |
RAPIN W, MESLIN P Y, MAURICE S, et al. Hydration state of calcium sulfates in Gale crater, Mars: identification of bassanite veins[J]. Earth and Planetary Science Letters, 2016, 452:197-205.
DOI URL |
[72] | NACHON M, CLEGG S M, MANGOLD N, et al. Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars[J]. Journal of Geophysical Research: Planets, 2015, 1199:1991-2016. |
[73] |
VAN DRIESSCHE A E S, BENNING L G, RODRIGUEZ-BLANCO J D, et al. The role and implications of bassanite as a stable precursor phase to gypsum precipitation[J]. Science, 2012, 336(6077):69-72.
DOI URL |
[74] |
YE P J, SUN Z Z, RAO W, et al. Mission overview and key technologies of the first Mars probe of China[J]. Science China: Technological Sciences, 2017, 60(5):649-657.
DOI URL |
[75] | 李春来, 刘建军, 耿言, 等. 中国首次火星探测任务科学目标与有效载荷配置[J]. 深空探测学报, 2018, 5(5):406-413. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||