Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (3): 239-253.DOI: 10.13745/j.esf.sf.2020.4.3
Previous Articles Next Articles
LIANG Pei1,2(), CHEN Huayong2,*(
), ZHAO Liandang3, Kendrick MARK4, JIANG Hongjun2,5, ZHANG Weifeng6, WU Chao2, XIE Yuling1
Received:
2019-10-11
Revised:
2020-03-10
Online:
2020-05-20
Published:
2020-05-20
Contact:
CHEN Huayong
CLC Number:
LIANG Pei, CHEN Huayong, ZHAO Liandang, Kendrick MARK, JIANG Hongjun, ZHANG Weifeng, WU Chao, XIE Yuling. Fluid evolution of iron oxide-Cu-Au (IOCG) deposits in the basin inversion setting, North Xinjiang: constraints from halogen and noble gas composition of fluid inclusions[J]. Earth Science Frontiers, 2020, 27(3): 239-253.
Fig.2 Regional metallogenic map of the contacting region between the southeastern Altay orogenic belt and northeastern Junggar terrane. Modified from [7,12,29].
矿床 | 阶段 | 样品号 | 采样位置 | 描述 |
---|---|---|---|---|
黑尖山 | Stage H-Ⅱ磁铁矿矿化阶段 | HJ13-003 | 露天主采坑底部 | 块状磁铁矿-赤铁矿-石英矿石 |
Stage H-Ⅲ黄铁矿蚀变阶段 | HJ13-001 | 露天主采坑底部 | 块状磁铁矿-赤铁矿-石英矿石 | |
乔夏哈拉 | Stage Q-Ⅲ磁铁矿矿化阶段 | QX-053 | N46°48'20.19″, E89°39'50.27″ | 破碎带中的石英-钾长石脉 |
Stage Q-Ⅴ黄铜矿矿化阶段 | QX-009 | N46°48'57.72″, E89°39'10.88″ | 破碎带中的石英-方解石-孔雀石脉 | |
Stage Q-Ⅴ黄铜矿矿化阶段 | QX-014 | N46°48'54.18″, E89°39'20.51″ | 围岩中的石英-方解石-孔雀石脉 | |
老山口 | Stage L-Ⅱ磁铁矿矿化阶段 | LS-024 | N46°28'14.82″; E90° 6'3.98″ | 火山岩中的条带状夕卡岩-磁铁矿带 |
Stage L-Ⅱ磁铁矿矿化阶段 | LS14-029 | 五号矿井第3巷道 | 浸染状磁铁矿-绿帘石矿石 | |
Stage L-Ⅱ磁铁矿矿化阶段 | LS14-065 | 五号矿井第7巷道 | 块状的磁铁矿-绿帘石矿石 | |
Stage L-Ⅲ金属硫化物阶段 | LS14-038 | 五号矿井第5巷道 | 火山岩中的绿帘石-黄铁矿脉 | |
Stage L-Ⅲ金属硫化物阶段 | LS14-056 | 五号矿井第7巷道 | 块状磁铁矿中的绿帘石-黄铁矿脉 |
Table 1 Descriptions of analytical samples from iron oxide-copper-gold deposits in North Xinjiang
矿床 | 阶段 | 样品号 | 采样位置 | 描述 |
---|---|---|---|---|
黑尖山 | Stage H-Ⅱ磁铁矿矿化阶段 | HJ13-003 | 露天主采坑底部 | 块状磁铁矿-赤铁矿-石英矿石 |
Stage H-Ⅲ黄铁矿蚀变阶段 | HJ13-001 | 露天主采坑底部 | 块状磁铁矿-赤铁矿-石英矿石 | |
乔夏哈拉 | Stage Q-Ⅲ磁铁矿矿化阶段 | QX-053 | N46°48'20.19″, E89°39'50.27″ | 破碎带中的石英-钾长石脉 |
Stage Q-Ⅴ黄铜矿矿化阶段 | QX-009 | N46°48'57.72″, E89°39'10.88″ | 破碎带中的石英-方解石-孔雀石脉 | |
Stage Q-Ⅴ黄铜矿矿化阶段 | QX-014 | N46°48'54.18″, E89°39'20.51″ | 围岩中的石英-方解石-孔雀石脉 | |
老山口 | Stage L-Ⅱ磁铁矿矿化阶段 | LS-024 | N46°28'14.82″; E90° 6'3.98″ | 火山岩中的条带状夕卡岩-磁铁矿带 |
Stage L-Ⅱ磁铁矿矿化阶段 | LS14-029 | 五号矿井第3巷道 | 浸染状磁铁矿-绿帘石矿石 | |
Stage L-Ⅱ磁铁矿矿化阶段 | LS14-065 | 五号矿井第7巷道 | 块状的磁铁矿-绿帘石矿石 | |
Stage L-Ⅲ金属硫化物阶段 | LS14-038 | 五号矿井第5巷道 | 火山岩中的绿帘石-黄铁矿脉 | |
Stage L-Ⅲ金属硫化物阶段 | LS14-056 | 五号矿井第7巷道 | 块状磁铁矿中的绿帘石-黄铁矿脉 |
样品号 | 矿物 | Br/Cl (10-3) | I/Cl (10-6) | Br/I | K/Cl | Ca/Cl | 40ArE/Cl (10-6) | Cl/36Ar (106) | w(NaCl)Max/% | 40ArE (10-6) | 36Ar (10-9) | 40Ar/36Ar (initial) | 84Kr/36Ar | 130Xe/36Ar (10-3) | 129Xe/36Ar (10-3) | F(84Kr) | F(130Xe) | F(129Xe) | K/36Ar (106) | 40Ar*/K (10-3) | 分阶段表观 年龄/Ma |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
黑尖山(本文) | |||||||||||||||||||||
Stage H-II | |||||||||||||||||||||
HJ-003 | 石英 | 1.05 | 18 | 58.3 | 0.03 | 1.91 | 29.7 | 56 | 0.01 | 181 | 352 | 0.02 | 0.2 | 1.15 | 1.06 | 1.8 | 1.57 | 0.86 | 0.07 | 3 303 | |
HJ-003 | 石英 | 1.03 | 16.9 | 60.6 | 0.02 | 1.63 | 49 | 56 | 0.01 | 212 | 375 | 0.02 | 0.21 | 1.21 | 1.12 | 1.86 | 1.66 | 1.19 | 0.07 | 3 334 | |
HJ-003 | 石英 | 1.05 | 16.4 | 64.1 | 0.03 | 0.27 | 1.47 | 65.2 | 56 | 0.01 | 235 | 391 | 0.02 | 0.24 | 1.32 | 1.14 | 2.09 | 1.81 | 1.95 | 0.05 | 2 867 |
HJ-003 | 石英 | 1.06 | 16.3 | 65.2 | 0.03 | 0.79 | 1.57 | 89.8 | 56 | 0.01 | 219 | 437 | 0.03 | 0.27 | 1.54 | 1.3 | 2.42 | 2.1 | 2.52 | 0.06 | 3 060 |
HJ-003 av. | 石英 | 1.05 | 16.9 | 62.1 | 0.03 | 0.53 | 1.64 | 58.4 | 56 | 0.01 | 212 | 389 | 0.02 | 0.23 | 1.31 | 1.15 | 2.04 | 1.78 | 1.63 | 0.06 | 3 141 |
Stage H-III | |||||||||||||||||||||
HJ-001 | 石英 | 0.39 | 3 958 | 0.1 | 0.12 | 160 | 1.04 | 34.7 | 0.03 | 292 | 0.02 | 0.21 | 1.2 | 1.16 | 1.89 | 1.64 | 0.13 | ||||
HJ-001 | 石英 | 0.69 | 10 510 | 0.07 | 0.23 | 729 | 1.37 | 34.7 | 0.05 | 288 | 0.02 | 0.22 | 1.21 | 1.1 | 1.92 | 1.65 | 0.31 | ||||
HJ-001 | 石英 | 1.28 | 26 301 | 0.05 | 0.22 | 2 669 | 2.55 | 34.7 | 0.05 | 0.03 | 0.26 | 1.51 | 1.3 | 2.06 | 0.55 | ||||||
HJ-001 av. | 石英 | 0.79 | 13 590 | 0.07 | 0.19 | 1 186 | 1.65 | 34.7 | 0.04 | 290 | 0.02 | 0.23 | 1.3 | 1.19 | 1.9 | 1.78 | 0.33 | ||||
乔夏哈拉(另文发表) | |||||||||||||||||||||
Stage Q-III | |||||||||||||||||||||
QX-053 av. | 石英 | 1.22 | 3 759 | 0.32 | 0.09 | — | 44.6 | 4.76 | 14.7 | 0.01 | 2.04 | 510 | 0.02 | 0.17 | 1.14 | 0.96 | 1.5 | 1.56 | 0.48 | 0.56 | 6 775 |
Stage Q-IV | |||||||||||||||||||||
QX-009 av. | 方解石 | 1 | 477 | 2.08 | 0.39 | 189 | 42.9 | 1.75 | 15.3 | 0.04 | 2.29 | 370 | 0.03 | 0.29 | 1.71 | 1.22 | 2.57 | 2.34 | 0.7 | 0.13 | 4 243 |
QX-14 av. | 方解石 | 1 | 907 | 1.13 | 0.2 | 345 | 50.4 | 1.12 | 15.3 | 0.02 | 1.9 | 351 | 0.03 | 0.23 | 1.49 | 1.25 | 2.05 | 2.03 | 0.2 | 0.32 | 5 737 |
QX-014(dup) av. | 方解石 | 1.13 | 1 042 | 1.09 | 0.22 | 319 | 61.8 | 1.26 | 15.3 | 0.02 | 1.52 | 374 | 0.02 | 0.18 | 1.16 | 1.07 | 1.56 | 1.59 | 0.25 | 0.31 | 2 573 |
老山口(另文发表) | |||||||||||||||||||||
Stage L-II | |||||||||||||||||||||
LS-024 av. | 绿帘石 | 1.96 | 127 | 15.4 | 0.24 | 7.21 | 9.96 | 19 | 15.7 | 1.07 | 5.34 | 492 | 0.02 | 0.15 | 0.88 | 1.1 | 1.33 | 1.2 | 4.52 | 0.06 | 2 754 |
LS14-029 av. | 绿帘石 | 1.49 | 82.8 | 18 | 0.1 | 6.42 | 11.3 | 24 | 15.7 | 1.21 | 4.22 | 566 | 0.02 | 0.11 | 1.01 | 0.97 | 1.02 | 1.38 | 2.49 | 0.12 | 4 150 |
LS14-065 av. | 绿帘石 | 1.45 | 76.5 | 19 | 0.12 | 8.23 | 12.1 | 37.6 | 15.7 | 1.3 | 2.64 | 749 | 0.03 | 0.22 | 1.86 | 1.33 | 1.94 | 2.55 | 4.59 | 0.1 | 3 974 |
Stage L-III | |||||||||||||||||||||
LS14-038 av. | 绿帘石 | 1.8 | 87.7 | 20.6 | 0.16 | 11.8 | 15.1 | 39.4 | 21.2 | 2.18 | 3.4 | 883 | 0.02 | 0.2 | 1.33 | 1.16 | 1.81 | 1.82 | 6.29 | 0.1 | 3 924 |
LS14-056 av. | 绿帘石 | 1.53 | 77.1 | 19.9 | 0.42 | 21.3 | 28.6 | 13.2 | 21.2 | 4.14 | 9.92 | 672 | 0.02 | 0.18 | 1.25 | 1.1 | 1.76 | 1.71 | 5.45 | 0.12 | 3 711 |
Table 2 Results of isotopic analysis of halogen and noble gas elements in fluid inclusions during different mineralization stages in the North Xinjiang iron oxide-Cu-Au deposits
样品号 | 矿物 | Br/Cl (10-3) | I/Cl (10-6) | Br/I | K/Cl | Ca/Cl | 40ArE/Cl (10-6) | Cl/36Ar (106) | w(NaCl)Max/% | 40ArE (10-6) | 36Ar (10-9) | 40Ar/36Ar (initial) | 84Kr/36Ar | 130Xe/36Ar (10-3) | 129Xe/36Ar (10-3) | F(84Kr) | F(130Xe) | F(129Xe) | K/36Ar (106) | 40Ar*/K (10-3) | 分阶段表观 年龄/Ma |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
黑尖山(本文) | |||||||||||||||||||||
Stage H-II | |||||||||||||||||||||
HJ-003 | 石英 | 1.05 | 18 | 58.3 | 0.03 | 1.91 | 29.7 | 56 | 0.01 | 181 | 352 | 0.02 | 0.2 | 1.15 | 1.06 | 1.8 | 1.57 | 0.86 | 0.07 | 3 303 | |
HJ-003 | 石英 | 1.03 | 16.9 | 60.6 | 0.02 | 1.63 | 49 | 56 | 0.01 | 212 | 375 | 0.02 | 0.21 | 1.21 | 1.12 | 1.86 | 1.66 | 1.19 | 0.07 | 3 334 | |
HJ-003 | 石英 | 1.05 | 16.4 | 64.1 | 0.03 | 0.27 | 1.47 | 65.2 | 56 | 0.01 | 235 | 391 | 0.02 | 0.24 | 1.32 | 1.14 | 2.09 | 1.81 | 1.95 | 0.05 | 2 867 |
HJ-003 | 石英 | 1.06 | 16.3 | 65.2 | 0.03 | 0.79 | 1.57 | 89.8 | 56 | 0.01 | 219 | 437 | 0.03 | 0.27 | 1.54 | 1.3 | 2.42 | 2.1 | 2.52 | 0.06 | 3 060 |
HJ-003 av. | 石英 | 1.05 | 16.9 | 62.1 | 0.03 | 0.53 | 1.64 | 58.4 | 56 | 0.01 | 212 | 389 | 0.02 | 0.23 | 1.31 | 1.15 | 2.04 | 1.78 | 1.63 | 0.06 | 3 141 |
Stage H-III | |||||||||||||||||||||
HJ-001 | 石英 | 0.39 | 3 958 | 0.1 | 0.12 | 160 | 1.04 | 34.7 | 0.03 | 292 | 0.02 | 0.21 | 1.2 | 1.16 | 1.89 | 1.64 | 0.13 | ||||
HJ-001 | 石英 | 0.69 | 10 510 | 0.07 | 0.23 | 729 | 1.37 | 34.7 | 0.05 | 288 | 0.02 | 0.22 | 1.21 | 1.1 | 1.92 | 1.65 | 0.31 | ||||
HJ-001 | 石英 | 1.28 | 26 301 | 0.05 | 0.22 | 2 669 | 2.55 | 34.7 | 0.05 | 0.03 | 0.26 | 1.51 | 1.3 | 2.06 | 0.55 | ||||||
HJ-001 av. | 石英 | 0.79 | 13 590 | 0.07 | 0.19 | 1 186 | 1.65 | 34.7 | 0.04 | 290 | 0.02 | 0.23 | 1.3 | 1.19 | 1.9 | 1.78 | 0.33 | ||||
乔夏哈拉(另文发表) | |||||||||||||||||||||
Stage Q-III | |||||||||||||||||||||
QX-053 av. | 石英 | 1.22 | 3 759 | 0.32 | 0.09 | — | 44.6 | 4.76 | 14.7 | 0.01 | 2.04 | 510 | 0.02 | 0.17 | 1.14 | 0.96 | 1.5 | 1.56 | 0.48 | 0.56 | 6 775 |
Stage Q-IV | |||||||||||||||||||||
QX-009 av. | 方解石 | 1 | 477 | 2.08 | 0.39 | 189 | 42.9 | 1.75 | 15.3 | 0.04 | 2.29 | 370 | 0.03 | 0.29 | 1.71 | 1.22 | 2.57 | 2.34 | 0.7 | 0.13 | 4 243 |
QX-14 av. | 方解石 | 1 | 907 | 1.13 | 0.2 | 345 | 50.4 | 1.12 | 15.3 | 0.02 | 1.9 | 351 | 0.03 | 0.23 | 1.49 | 1.25 | 2.05 | 2.03 | 0.2 | 0.32 | 5 737 |
QX-014(dup) av. | 方解石 | 1.13 | 1 042 | 1.09 | 0.22 | 319 | 61.8 | 1.26 | 15.3 | 0.02 | 1.52 | 374 | 0.02 | 0.18 | 1.16 | 1.07 | 1.56 | 1.59 | 0.25 | 0.31 | 2 573 |
老山口(另文发表) | |||||||||||||||||||||
Stage L-II | |||||||||||||||||||||
LS-024 av. | 绿帘石 | 1.96 | 127 | 15.4 | 0.24 | 7.21 | 9.96 | 19 | 15.7 | 1.07 | 5.34 | 492 | 0.02 | 0.15 | 0.88 | 1.1 | 1.33 | 1.2 | 4.52 | 0.06 | 2 754 |
LS14-029 av. | 绿帘石 | 1.49 | 82.8 | 18 | 0.1 | 6.42 | 11.3 | 24 | 15.7 | 1.21 | 4.22 | 566 | 0.02 | 0.11 | 1.01 | 0.97 | 1.02 | 1.38 | 2.49 | 0.12 | 4 150 |
LS14-065 av. | 绿帘石 | 1.45 | 76.5 | 19 | 0.12 | 8.23 | 12.1 | 37.6 | 15.7 | 1.3 | 2.64 | 749 | 0.03 | 0.22 | 1.86 | 1.33 | 1.94 | 2.55 | 4.59 | 0.1 | 3 974 |
Stage L-III | |||||||||||||||||||||
LS14-038 av. | 绿帘石 | 1.8 | 87.7 | 20.6 | 0.16 | 11.8 | 15.1 | 39.4 | 21.2 | 2.18 | 3.4 | 883 | 0.02 | 0.2 | 1.33 | 1.16 | 1.81 | 1.82 | 6.29 | 0.1 | 3 924 |
LS14-056 av. | 绿帘石 | 1.53 | 77.1 | 19.9 | 0.42 | 21.3 | 28.6 | 13.2 | 21.2 | 4.14 | 9.92 | 672 | 0.02 | 0.18 | 1.25 | 1.1 | 1.76 | 1.71 | 5.45 | 0.12 | 3 711 |
Fig.5 I/Cl-Br/Cl discrimination diagram for fluid inclusions during different mineralization stages in the Laoshankou,Qiaoxiahala and Heijianshan deposits. Modified from [18,47-57].
Fig.6 Cl/36Ar-40Ar/36Ar discrimination diagram for fluid inclusions during different stages of mineralization in the Laoshankou,Qiaoxiahala and Heijianshan deposits. Modified from [20,58].
Fig.7 Plots of halogens and noble gases for fluid inclusions druing different mineralization stages in the Laoshankou, Qiaoxiahala and Heijianshan deposits
Fig.8 Plots of F(84Kr)-F(129Xe) for fluid inclusions during different mineralization stages in the Laoshankou, Qiaoxiahala and Heijianshan deposits. Modified from [61,62].
对比内容 | 黑尖山矿床 | 老山口矿床 | 乔夏哈拉矿床 | 海相火山岩型 铁铜矿床 | 夕卡岩型铁铜矿床 (Skarn) | 中安第斯IOCG矿床 | |
---|---|---|---|---|---|---|---|
构造环境 | 盆地闭合 (弧盆转化体制) | 大洋岛弧环境 (弧盆转化体制) | 大洋岛弧环境 (弧盆转化体制下) | 俯冲背景下的大陆弧环境 | 岛弧、弧后盆地、大陆边缘弧环境 | 大陆边缘弧后盆地倒转环境 | |
赋矿围岩 | 马头滩组凝灰岩和角砾凝灰岩 | 北塔山组玄武-安山质火山岩及火山角砾岩 | 北塔山组火山岩和沉积岩 | 海相火山岩、次火山岩、火山沉积岩 | 富Ca或富Mg火山岩为主,并存在碎屑沉积岩或灰岩、大理岩等碳酸盐岩 | 玄武-安山质火山熔岩、凝灰岩、火山角砾岩、沉积岩和中-酸性侵入岩 | |
岩 浆 活 动 | 岩石 类型 | 中-酸性侵入体 | 闪长玢岩(准铝质、钙碱性-钾玄质) | 闪长玢岩(准铝质、钙碱性-钾玄质) | 中-酸性侵入体 | 钙碱性、准铝质中酸性侵入岩 | 准铝质-弱过铝质、钙碱性-高钾钙碱性系列中酸性侵入岩为主,少数为基性岩墙 |
成矿 相关性 | 与矿化无明显的时空关系 | 与矿化具有紧密的时空关系,存在一定关联 | 与矿化具有紧密的时空关系,存在一定关联 | 与矿化无明显时空关系,矿体和夕卡岩并不产在中酸性岩体和碳酸盐岩的接触带 | 与矿化具有紧密的时空关系 | 与矿体缺乏直接空间接触关系,但部分矿床的矿体赋存于岩体中 | |
控矿构造 | 断裂切割矿体,断裂构造控矿不明显 | 断裂切割矿体,断裂构造控矿不明显 | 断裂构造控制明显 | 火山构造控制明显 | 受褶皱、断裂控制明显 | 受断裂构造控制明显 | |
矿石类型 | 层状、似层状矿体含块状、浸染状、角砾状和脉状矿石 | 层状、透镜状矿体含块状、条带状、脉状和浸染状矿石 | 似层状、透镜状矿体含块状、条带状、角砾状、脉状和浸染状矿石 | 脉状、层状、透镜状、板状、条带状矿体含块状、细脉浸染状矿石 | 层状、透镜状、脉状矿体含块状、浸染状、脉状矿石 | 脉状或多期脉状、层状矿体含块状、条带状、角砾状矿石 | |
矿化分带 | 铁、铜-金矿化分带明显 | 明显,上铁下铜,即上部磁铁矿矿体,下部铜-金矿体 | 明显,上铁下铜,即上部磁铁矿矿体,中部含铜金磁铁矿矿体,下部铜-金矿体 | 不明显,主体铁矿体 | 明显,自内向外依次为岩体、内夕卡岩与磁铁矿化、外夕卡岩与硫化物、灰岩 | 铁、铜-金矿化分带明显,并具有明显不同的矿化组合 | |
蚀变- 矿化组合 | (1)Ca-Mg蚀变;(2)Fe矿化阶段为磁铁矿-角闪石-石英+钾长石组合;(3)Cu(-Au)矿化阶段为黄铜矿-石英-绿泥石组合+银金矿+赤铁矿 | (1)Ca硅酸盐阶段,包含钙石榴子石、辉石夕卡岩等,钠、钾化微弱;(2)Fe矿化阶段整体以磁铁矿-绿帘石-角闪石组合为主;(3)Cu-Au矿化阶段以黄铜矿(磁铁矿?)-角闪石-绿泥石-方解石组合为主 | 早期广泛发育石榴子石夕卡岩和绿帘石-角闪石夕卡岩,钠化不明显,存在明显钾化并与磁铁矿共生,整体仍以绿帘石化为主,存在磁铁矿-磷灰石-钾长石-石英-绿帘石矿物组合;后期存在晚期磁体矿化以磁铁矿-石榴子石-石英-黄铁矿-方解石组合为主;铜矿化阶段为黄铜矿-绿泥石-石英组合 | 钠长石化(少数出现钾长石化)、夕卡岩化、湿夕卡岩化或退化蚀变(磁铁矿矿化阶段,绿泥石化和绿帘石化为主)、硫化物矿化以及石英-碳酸盐化;以低钛磁铁矿为主,有少量黄铁矿、黄铜矿和磁黄铁矿 | 早夕卡岩阶段发育钙或镁石榴石、辉石等;退夕卡岩阶段发育角闪石、绿帘石等,即磁铁矿-退夕卡岩组合;其后发育石英-硫化物矿物组合;侵入体自身普遍发育钠化,沉积岩发生接触热变质作用 | 普遍存在Na和Na-Ca化,且多位于深部更远离矿体端,个别矿体缺乏钾化或钠化;存在大量的磁铁矿和赤铁矿矿化以及经济品位的铜、金,其中铁矿化为磁铁矿-黑云母-钾长石和角闪石组合(少数出现石榴石、辉石、钠长石、绢云母、绿帘石、绿泥石等)以及赤铁矿-绢云母-绿泥石组合(发育或不发育钾化蚀变),矿体深部铜金矿化为富铜硫化物-方解石组合 | |
成矿流 体特征 | Fe矿化阶段为 高温(590 ℃) Na-Ca-Mg-Fe体系;Cu(-Au)矿化阶段为中温(240 ℃)Ca-Mg体系 | 磁铁矿阶段:高温(529 ℃)、中盐度(约15.7%)、富Mg/Fe流体;铜-金阶段:中温(279 ℃)、低盐度(8%~12%)、富Na流体和中温、中盐度(14%~18%)、富Mg/Fe或Ca流体混合 | 磁铁矿阶段:高温(520 ℃)、低-中盐度(10%~15%)、富Mg/Fe;磁铁矿-硫化物阶段:中-高温(431 ℃)、低-中盐度(2%~12%)、富Mg/Fe;铜-金阶段:低-中温(270 ℃)、低-中盐度(4%~16%)、富Ca或富Na流体 | 成矿流体由早期到晚期,温度由高到低,盐度由高到低 | 早夕卡岩阶段主要为高温(>500 ℃)、高盐度(>50%)原始岩浆流体,退夕卡岩阶段和主成矿阶段多为中温(约300 ℃)、中盐度(<25%)岩浆流体,之后向大气降水和沉积岩方向演化 | 铁矿化阶段:高温(>400 ℃)、高盐度、富Na或Fe/Mg流体;铜-金阶段:低温(100~450 ℃)、高盐度、富Ca或富Na岩浆或非岩浆流体 | |
流体与 成矿物 质来源 | Fe矿化阶段:主要为岩浆热液流体;Cu(-Au)矿化阶段:盆地卤水与火山岩地层反应 | 存在明显多源流体混合:钙硅酸盐阶段,岩浆流体;磁铁矿阶段,海水加入到岩浆流体中;铜-金阶段,海水蒸发盆地盐卤水;后期脉,大气降水 | 存在明显多源流体混合:夕卡岩阶段,岩浆流体;磁铁矿阶段,海水加入到岩浆流体中;磁铁矿-硫化物阶段,地层水;铜金阶段,富有机质地层水;后期脉,大气降水 | 成矿流体早期以岩浆水为主,晚期海水占的比例增大 | 成矿流体主要为岩浆流体,也具有其他变质流体、大气降水或盆地卤水的加入 | 存在广泛的卤水混入以及碳酸组分:铁矿化阶段主要为岩浆流体或其他流体与围岩水-岩反应;铜-金阶段通常为富Ca海水或盆地卤水,富或不含CO2 | |
参考文献 | 本文和[16] | 本文和[6] | 本文和[7] | [71-72] | [73-74] | [75-77] |
Table 3 Comparisons of geological characteristics between the North Xinjiang iron oxide-copper-gold deposits and main possible deposit types
对比内容 | 黑尖山矿床 | 老山口矿床 | 乔夏哈拉矿床 | 海相火山岩型 铁铜矿床 | 夕卡岩型铁铜矿床 (Skarn) | 中安第斯IOCG矿床 | |
---|---|---|---|---|---|---|---|
构造环境 | 盆地闭合 (弧盆转化体制) | 大洋岛弧环境 (弧盆转化体制) | 大洋岛弧环境 (弧盆转化体制下) | 俯冲背景下的大陆弧环境 | 岛弧、弧后盆地、大陆边缘弧环境 | 大陆边缘弧后盆地倒转环境 | |
赋矿围岩 | 马头滩组凝灰岩和角砾凝灰岩 | 北塔山组玄武-安山质火山岩及火山角砾岩 | 北塔山组火山岩和沉积岩 | 海相火山岩、次火山岩、火山沉积岩 | 富Ca或富Mg火山岩为主,并存在碎屑沉积岩或灰岩、大理岩等碳酸盐岩 | 玄武-安山质火山熔岩、凝灰岩、火山角砾岩、沉积岩和中-酸性侵入岩 | |
岩 浆 活 动 | 岩石 类型 | 中-酸性侵入体 | 闪长玢岩(准铝质、钙碱性-钾玄质) | 闪长玢岩(准铝质、钙碱性-钾玄质) | 中-酸性侵入体 | 钙碱性、准铝质中酸性侵入岩 | 准铝质-弱过铝质、钙碱性-高钾钙碱性系列中酸性侵入岩为主,少数为基性岩墙 |
成矿 相关性 | 与矿化无明显的时空关系 | 与矿化具有紧密的时空关系,存在一定关联 | 与矿化具有紧密的时空关系,存在一定关联 | 与矿化无明显时空关系,矿体和夕卡岩并不产在中酸性岩体和碳酸盐岩的接触带 | 与矿化具有紧密的时空关系 | 与矿体缺乏直接空间接触关系,但部分矿床的矿体赋存于岩体中 | |
控矿构造 | 断裂切割矿体,断裂构造控矿不明显 | 断裂切割矿体,断裂构造控矿不明显 | 断裂构造控制明显 | 火山构造控制明显 | 受褶皱、断裂控制明显 | 受断裂构造控制明显 | |
矿石类型 | 层状、似层状矿体含块状、浸染状、角砾状和脉状矿石 | 层状、透镜状矿体含块状、条带状、脉状和浸染状矿石 | 似层状、透镜状矿体含块状、条带状、角砾状、脉状和浸染状矿石 | 脉状、层状、透镜状、板状、条带状矿体含块状、细脉浸染状矿石 | 层状、透镜状、脉状矿体含块状、浸染状、脉状矿石 | 脉状或多期脉状、层状矿体含块状、条带状、角砾状矿石 | |
矿化分带 | 铁、铜-金矿化分带明显 | 明显,上铁下铜,即上部磁铁矿矿体,下部铜-金矿体 | 明显,上铁下铜,即上部磁铁矿矿体,中部含铜金磁铁矿矿体,下部铜-金矿体 | 不明显,主体铁矿体 | 明显,自内向外依次为岩体、内夕卡岩与磁铁矿化、外夕卡岩与硫化物、灰岩 | 铁、铜-金矿化分带明显,并具有明显不同的矿化组合 | |
蚀变- 矿化组合 | (1)Ca-Mg蚀变;(2)Fe矿化阶段为磁铁矿-角闪石-石英+钾长石组合;(3)Cu(-Au)矿化阶段为黄铜矿-石英-绿泥石组合+银金矿+赤铁矿 | (1)Ca硅酸盐阶段,包含钙石榴子石、辉石夕卡岩等,钠、钾化微弱;(2)Fe矿化阶段整体以磁铁矿-绿帘石-角闪石组合为主;(3)Cu-Au矿化阶段以黄铜矿(磁铁矿?)-角闪石-绿泥石-方解石组合为主 | 早期广泛发育石榴子石夕卡岩和绿帘石-角闪石夕卡岩,钠化不明显,存在明显钾化并与磁铁矿共生,整体仍以绿帘石化为主,存在磁铁矿-磷灰石-钾长石-石英-绿帘石矿物组合;后期存在晚期磁体矿化以磁铁矿-石榴子石-石英-黄铁矿-方解石组合为主;铜矿化阶段为黄铜矿-绿泥石-石英组合 | 钠长石化(少数出现钾长石化)、夕卡岩化、湿夕卡岩化或退化蚀变(磁铁矿矿化阶段,绿泥石化和绿帘石化为主)、硫化物矿化以及石英-碳酸盐化;以低钛磁铁矿为主,有少量黄铁矿、黄铜矿和磁黄铁矿 | 早夕卡岩阶段发育钙或镁石榴石、辉石等;退夕卡岩阶段发育角闪石、绿帘石等,即磁铁矿-退夕卡岩组合;其后发育石英-硫化物矿物组合;侵入体自身普遍发育钠化,沉积岩发生接触热变质作用 | 普遍存在Na和Na-Ca化,且多位于深部更远离矿体端,个别矿体缺乏钾化或钠化;存在大量的磁铁矿和赤铁矿矿化以及经济品位的铜、金,其中铁矿化为磁铁矿-黑云母-钾长石和角闪石组合(少数出现石榴石、辉石、钠长石、绢云母、绿帘石、绿泥石等)以及赤铁矿-绢云母-绿泥石组合(发育或不发育钾化蚀变),矿体深部铜金矿化为富铜硫化物-方解石组合 | |
成矿流 体特征 | Fe矿化阶段为 高温(590 ℃) Na-Ca-Mg-Fe体系;Cu(-Au)矿化阶段为中温(240 ℃)Ca-Mg体系 | 磁铁矿阶段:高温(529 ℃)、中盐度(约15.7%)、富Mg/Fe流体;铜-金阶段:中温(279 ℃)、低盐度(8%~12%)、富Na流体和中温、中盐度(14%~18%)、富Mg/Fe或Ca流体混合 | 磁铁矿阶段:高温(520 ℃)、低-中盐度(10%~15%)、富Mg/Fe;磁铁矿-硫化物阶段:中-高温(431 ℃)、低-中盐度(2%~12%)、富Mg/Fe;铜-金阶段:低-中温(270 ℃)、低-中盐度(4%~16%)、富Ca或富Na流体 | 成矿流体由早期到晚期,温度由高到低,盐度由高到低 | 早夕卡岩阶段主要为高温(>500 ℃)、高盐度(>50%)原始岩浆流体,退夕卡岩阶段和主成矿阶段多为中温(约300 ℃)、中盐度(<25%)岩浆流体,之后向大气降水和沉积岩方向演化 | 铁矿化阶段:高温(>400 ℃)、高盐度、富Na或Fe/Mg流体;铜-金阶段:低温(100~450 ℃)、高盐度、富Ca或富Na岩浆或非岩浆流体 | |
流体与 成矿物 质来源 | Fe矿化阶段:主要为岩浆热液流体;Cu(-Au)矿化阶段:盆地卤水与火山岩地层反应 | 存在明显多源流体混合:钙硅酸盐阶段,岩浆流体;磁铁矿阶段,海水加入到岩浆流体中;铜-金阶段,海水蒸发盆地盐卤水;后期脉,大气降水 | 存在明显多源流体混合:夕卡岩阶段,岩浆流体;磁铁矿阶段,海水加入到岩浆流体中;磁铁矿-硫化物阶段,地层水;铜金阶段,富有机质地层水;后期脉,大气降水 | 成矿流体早期以岩浆水为主,晚期海水占的比例增大 | 成矿流体主要为岩浆流体,也具有其他变质流体、大气降水或盆地卤水的加入 | 存在广泛的卤水混入以及碳酸组分:铁矿化阶段主要为岩浆流体或其他流体与围岩水-岩反应;铜-金阶段通常为富Ca海水或盆地卤水,富或不含CO2 | |
参考文献 | 本文和[16] | 本文和[6] | 本文和[7] | [71-72] | [73-74] | [75-77] |
[1] |
SENGÖR A M C, NATAL'IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299-307.
DOI URL |
[2] |
JAHN B M, WU F Y, CHEN B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23(2):82-92.
DOI URL |
[3] |
CHEN Y J, PIRAJNO F, WU G, et al. Epithermal deposits in North Xinjiang, NW China[J]. International Journal of Earth Sciences, 2011, 101(4):889-917.
DOI URL |
[4] | 杨富全, 毛景文, 夏浩东, 等. 新疆北部古生代浅成低温热液型金矿特征及其地球动力学背景[J]. 矿床地质, 2005, 24(3):242-263. |
[5] | 张维峰, 陈华勇, 江宏君, 等. 新疆东天山多头山铁-铜矿区花岗岩类的年代学、 地球化学、 岩石成因及意义[J]. 大地构造与成矿学, 2017, 41(6):1171-1191. |
[6] |
LIANG P, CHEN H Y, HAN J S, et al. Iron oxide-copper-gold mineralization of the Devonian Laoshankou deposit (Xinjiang, NW China) in the Central Asian Orogenic Belt[J]. Ore Geology Reviews, 2019, 104:628-655.
DOI URL |
[7] |
LIANG P, CHEN H Y, WU C, et al. Mineralization and ore genesis of the Qiaoxiahala Fe-Cu-(Au) deposit in the northern margin of East Junggar terrane, Central Asian Orogenic Belt: constraints from fluid inclusions and stable isotopes[J]. Ore Geology Reviews, 2018, 100:360-384.
DOI URL |
[8] | 赵联党, 陈华勇, 张莉, 等. 新疆黑尖山Fe-Cu(-Au)矿床氢氧同位素特征及其地质意义[J]. 矿床地质, 2017, 36(1):38-56. |
[9] | 江宏君, 陈华勇, 韩金生, 等. 东天山沙泉子铁铜矿床矿物学特征及其成矿意义[J]. 地球化学, 2016, 45(4):329-355. |
[10] |
LI Q, LÜ S J, YANG F Q, et al. Geological characteristics and genesis of the Laoshankou Fe-Cu-Au deposit in Junggar, Xinjiang, Central Asian Orogenic Belt[J]. Ore Geology Reviews, 2015, 68:59-78.
DOI URL |
[11] |
LI Q, ZHANG Z X, GENG X X, et al. Geology and geochemistry of the Qiaoxiahala Fe-Cu-Au deposit, Junggar region, northwest China[J]. Ore Geology Reviews, 2014, 57:462-481.
DOI URL |
[12] |
LIANG P, CHEN H Y, HAN J S, et al. Iron oxide-copper-gold mineralization of the Devonian Laoshankou deposit (Xinjiang, NW China) in the Central Asian Orogenic Belt[J]. Ore Geology Reviews, 2019, 104:628-655.
DOI URL |
[13] |
MAO J W, RICHARD J G, WANG Y T, et al. Late Paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China: characteristics and geodynamic setting[J]. Episodes, 2005, 28(1):23-36.
DOI URL |
[14] |
ZHANG W F, CHEN H Y, PENG L H, et al. Discriminating hydrothermal fluid sources using tourmaline boron isotopes: example from Bailingshan Fe deposit in the Eastern Tianshan, NW China[J]. Ore Geology Reviews, 2018, 98:28-37.
DOI URL |
[15] |
ZHANG W F, CHEN H Y, PENG L H, et al. Ore genesis of the Duotoushan Fe-Cu deposit, Eastern Tianshan, NW China: constraints from ore geology, mineral geochemistry, fluid inclusion and stable isotopes[J]. Ore Geology Reviews, 2018, 100:401-421.
DOI URL |
[16] |
ZHAO L D, CHEN H Y, ZHANG L, et al. Geology and ore genesis of the late Paleozoic Heijianshan Fe oxide-Cu (-Au) deposit in the Eastern Tianshan, NW China[J]. Ore Geology Reviews, 2017, 91:110-132.
DOI URL |
[17] | 黄小文, 漆亮, 王怡昌, 等. 东天山沙泉子铜铁矿床磁铁矿Re-Os定年初探[J]. 中国科学:地球科学, 2014, 44(4):605-616. |
[18] | KENDRICK M A, BURNARD P. Noble gases and halogens in fluid inclusions: a journey through the Earth's crust[M]//BURNARD P. The noble gases as geochemical tracers. Berlin: Springer, 2013: 319-369. |
[19] |
KENDRICK M A, BURGESS R, PATTRICK R A D, et al. Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralising fluids[J]. Geochimica et Cosmochimica Acta, 2001, 65(16):2651-2668.
DOI URL |
[20] |
KENDRICK M A, DUNCAN R, PHILLIPS D. Noble gas and halogen constraints on mineralizing fluids of metamorphic versus surficial origin: Mt Isa, Australia[J]. Chemical Geology, 2006, 235(3):325-351.
DOI URL |
[21] |
KENDRICK M A, BURGESS R, PATTRICK R A D, et al. Hydrothermal fluid origins in Mississippi Valley-type ore districts: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the Illinois-Kentucky fluorspar district, Viburnum Trend, and Tri-State districts, midcontinent United States[J]. Economic Geology, 2002, 97(3):453-469.
DOI URL |
[22] |
KENDRICK M A, BURGESS R, PATTRICK R A D, et al. Hydrothermal fluid origins in a fluorite-rich Mississippi Valley-type district: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine ore field, United Kingdom[J]. Economic Geology, 2002, 97(3):435-451.
DOI URL |
[23] |
TURNER G, BANNON M P. Argon isotope geochemistry of inclusion fluids from granite-associated mineral veins in southwest and northeast England[J]. Geochimica et Cosmochimica Acta, 1992, 56(1):227-243.
DOI URL |
[24] |
FUSSWINKEL T, GIEHL C, BEERMANN O, et al. Combined LA-ICP-MS microanalysis of iodine, bromine and chlorine in fluid inclusions[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(5):768-783.
DOI URL |
[25] |
FISHER L A, KENDRICK M A. Metamorphic fluid origins in the Osborne Fe oxide-Cu-Au deposit, Australia: evidence from noble gases and halogens[J]. Mineralium Deposita, 2008, 43(5):483-497.
DOI URL |
[26] |
WORDEN R H. Controls on halogen concentrations in sedimentary formation waters[J]. Mineralogical Magazine, 1996, 60(2):259-274.
DOI URL |
[27] | 新疆维吾尔自治区区域地层表编写组. 西北地区区域地层表, 新疆维吾尔自治区分册[M]. 北京: 地质出版社, 1983: 1-496. |
[28] | 尚海军, 李强, 于秀斌, 等. 新疆准噶尔北缘乔夏哈拉和老山口铁铜金矿床地质特征及磁铁矿成分分析[J]. 新疆地质, 2017, 35(1):43-49. |
[29] | 薛春纪, 赵战锋, 吴淦国, 等. 中亚构造域多期叠加斑岩铜矿化:以阿尔泰东南缘哈腊苏铜矿床地质、 地球化学和成岩成矿时代研究为例[J]. 地学前缘, 2010, 17(2):53-82. |
[30] | 童英. 阿尔泰造山带晚古生代花岗岩年代学、 成因及其地质意义[D]. 北京: 中国地质科学院, 2006: 1-102. |
[31] | 吕书君, 杨富全, 柴凤梅, 等. 东准噶尔北缘老山口铁铜金矿区侵入岩LA-ICP-MS锆石U-Pb定年及地质意义[J]. 地质论评, 2012, 58(1):149-164. |
[32] |
WU C, CHEN H Y, HOLLINGS P, et al. Magmatic sequences in the Halasu Cu Belt, NW China: trigger for the Paleozoic porphyry Cu mineralization in the Chinese Altay-East Junggar[J]. Ore Geology Reviews, 2015, 71:373-404.
DOI URL |
[33] |
DENG X H, WANG J B, PIRAJNO F, et al. Re-Os dating of chalcopyrite from selected mineral deposits in the Kalatag district in the eastern Tianshan orogen, China[J]. Ore Geology Reviews, 2016, 77:72-81.
DOI URL |
[34] |
HUANG X W, ZHOU M F, QI L, et al. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China[J]. Mineralium Deposita, 2013, 48(8):925-946.
DOI URL |
[35] |
ZHANG W F, CHEN H Y, HAN J S, et al. Geochronology and geochemistry of igneous rocks in the Bailingshan area: implications for the tectonic setting of Late Paleozoic magmatism and iron skarn mineralization in the eastern Tianshan, NW China[J]. Gondwana Research, 2016, 38:40-59.
DOI URL |
[36] |
XIAO W J, WINDLEY B F, BADARCH G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. Journal of the Geological Society, 2004, 161(3):339-342.
DOI URL |
[37] | 许继峰, 梅厚钧, 于学元, 等. 准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩: 消减板片部分熔融的产物[J]. 科学通报, 2001, 46(8):684-688. |
[38] | 张海祥, 牛贺才, SATO H, 等. 新疆北部晚古生代埃达克岩、 富铌玄武岩组合: 古亚洲洋板块南向俯冲的证据[J]. 高校地质学报, 2004, 10(1):106-113. |
[39] | 周刚. 新疆阿尔泰玛因鄂博断裂带两侧后碰撞花岗岩类的年代学、 岩石学和地球化学研究[D]. 北京: 中国地质科学院, 2007: 1-127. |
[40] | 梁培, 陈华勇, 韩金生, 等. 东准噶尔北缘早石炭世构造体制转变: 来自碱性花岗岩年代学和地球化学制约[J]. 大地构造与成矿学, 2017, 41(1):202-221. |
[41] |
JIANG H J, HAN J S, CHEN H Y, et al. Intra-continental back-arc basin inversion and Late Carboniferous magmatism in Eastern Tianshan, NW China: constraints from the Shaquanzi magmatic suite[J]. Geoscience Frontiers, 2017, 8(6):1447-1467.
DOI URL |
[42] |
LIANG P, CHEN H Y, HOLLINGS P, et al. The Paleozoic tectonic evolution and metallogenesis of the northern margin of East Junggar, Central Asia Orogenic Belt: geochronological and geochemical constraints from igneous rocks of the Qiaoxiahala Fe-Cu deposit[J]. Journal of Asian Earth Sciences, 2016, 130:23-45.
DOI URL |
[43] |
LIANG P, CHEN H Y, HOLLINGS P, et al. Geochronology and geochemistry of igneous rocks from the Laoshankou district, North Xinjiang: implications for the Late Paleozoic tectonic evolution and metallogenesis of East Junggar[J]. Lithos, 2016, 266/267:115-132.
DOI URL |
[44] |
CHEN H Y, COOKE D R, BAKER M J. Mesozoic iron oxide copper-gold mineralization in the central Andes and the Gondwana Supercontinent breakup[J]. Economic Geology, 2013, 108(1):37-44.
DOI URL |
[45] |
RODDICK J C. High precision intercalibration of 40Ar-39Ar standards[J]. Geochimica et Cosmochimica Acta, 1983, 47(5):887-898.
DOI URL |
[46] | KENDRICK M A. High precision Cl, Br and I determinations in mineral standards using the noble gas method[J]. Chemical Geology, 2012, 292:116-126. |
[47] | KENDRICK M A, MARK G, FISHER L, et al. Noble gas and halogen constraints on Mt Isa Cu ores[J]. ASEG Extended Abstracts, 2006, 2006(1):1-2. |
[48] |
KENDRICK M A, ARCULUS R J, DANYUSHEVSKY L V, et al. Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins[J]. Earth and Planetary Science Letters, 2014, 400:165-176.
DOI URL |
[49] | ZHEREBTSOVA I K, VOLKOVA N N. Experimental study of behaviour of trace elements in the process of natural solar evaporation of Black Sea water and Lake Sasky-Sivash brine[J]. Geochemistry International, 1966, 3(4):656-670. |
[50] | HOLSER W T. Trace elements and isotopes in evaporites[M]// BURNS R G. Marine minerals. Mineralogical Society of America Short Course Notes, 1979, 6:295-346. |
[51] |
FONTES J C, MATRAY J M. Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts[J]. Chemical Geology, 1993, 109(1/2/3/4):149-175.
DOI URL |
[52] |
FEDO C M, SIRCOMBE K N, RAINBIRD R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):277-303.
DOI URL |
[53] |
FEHN U, SNYDER G, EGEBERG P K. Dating of pore waters with 129I: relevance for the origin of marine gas hydrates[J]. Science, 2000, 289(5488):2332-2335.
DOI URL |
[54] |
MURAMATSU Y, DOI T, TOMARU H, et al. Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: implications for the origin of gas hydrates[J]. Applied Geochemistry, 2007, 22(3): 534-556.
DOI URL |
[55] |
MURAMATSU Y, FEHN U, YOSHIDA S. Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan[J]. Earth and Planetary Science Letters, 2001, 192(4):583-593.
DOI URL |
[56] |
TOMARU H, FEHN U, LU Z, et al. Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita Peninsula, Japan: 129I results from the D/V Chikyu shakedown cruise[J]. Resource Geology, 2009, 59(4):359-373.
DOI URL |
[57] |
TOMARU H, LU Z, SNYDER G T, et al. Origin and age of pore waters in an actively venting gas hydrate field near Sado Island, Japan Sea: interpretation of halogen and 129I distributions[J]. Chemical Geology, 2007, 236(3):350-366.
DOI URL |
[58] |
KENDRICK M A, BAKER T, FU B, et al. Noble gas and halogen constraints on regionally extensive mid-crustal Na-Ca metasomatism, the Proterozoic Eastern Mount Isa Block, Australia[J]. Precambrian Research, 2008, 163(1):131-150.
DOI URL |
[59] |
IRWIN J J, REYNOLDS J H. Multiple stages of fluid trapping in the Stripa granite indicated by laser microprobe analysis of Cl, Br, I, K, U, and nucleogenic plus radiogenic Ar, Kr, and Xe in fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1995, 59(2):355-369.
DOI URL |
[60] |
KENDRICK M A, PHILLIPS D, MILLER J M. Decrepitation and degassing behaviour of quartz up to 1560 ℃: analysis of noble gases and halogens in complex fluid inclusion assemblages[J]. Geochimica et Cosmochimica Acta, 2006, 70(10):2540-2561.
DOI URL |
[61] | OZIMA M, PODOSEK F A. Noble gas geochemistry[M]. Cambridge: Cambridge University Press, 2002: 1-300. |
[62] |
SMITH S P, KENNEDY B M. The solubility of noble gases in water and in NaCl brine[J]. Geochimica et Cosmochimica Acta, 1983, 47(3):503-515.
DOI URL |
[63] | MORRISON G. The Claytons granite model for the Osborne Cu-Au deposit: partial melting as a mineralizing process[M]// Structure, tectonics and ore mineralising processes abstract volume. EGRU Contribution, 2005: 1-93. |
[64] | SHEPPARD S M. Characterization and isotopic variations in natural waters[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(1):165-183. |
[65] |
BARTON M D, JOHNSON D A. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization[J]. Geology, 1996, 24(3):259.
DOI URL |
[66] | PIRAJNO F. Halogens in hydrothermal fluids and their role in the formation and evolution of hydrothermal mineral systems[M]//HARLOV D E, ARANOVICH L. The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Cham: Springer International Publishing, 2018: 759-804. |
[67] |
LI M H, YAN M D, WANG Z R, et al. The origins of the Mengye potash deposit in the Lanping-Simao Basin, Yunnan province, Western China[J]. Ore Geology Reviews, 2015, 69:174-186.
DOI URL |
[68] | HOEFS J. Stable isotope geochemistry[M]. Berlin: Springer Science & Business Media, 2008: 1-636. |
[69] |
HANOR J S. Origin of saline fluids in sedimentary basins[J]. Geological Society, London, Special Publications, 1994, 78(1):151-174.
DOI URL |
[70] | O'NIONS R K, BALLENTINE C J. Rare gas studies of basin scale fluid movement[J]. Philosophical Transactions A, 1993, 344(1670):141-156. |
[71] | 张招崇, 侯通, 李厚民, 等. 岩浆-热液系统中铁的富集机制探讨[J]. 岩石学报, 2014, 30(5):1189-1204. |
[72] | 张招崇, 柴凤梅, 谢秋红. 热幔-冷壳背景下的高角度俯冲:海相火山岩型铁矿的形成[J]. 中国地质, 2016, 43(2):367-379. |
[73] | 赵一鸣, 林文蔚, 毕承思, 等. 中国矽卡岩矿床[M]. 北京: 地质出版社, 1990: 1-354. |
[74] | MEINERT L D, DIPPLE G M, NICOLESCU S. World skarn deposits[J]. Economic Geology, 2005, 100:299-336. |
[75] |
CHEN H Y, KYSER T K, CLARK A H. Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide-Cu(-Ag-Au) deposits, south-central Perú[J]. Mineralium Deposita, 2011, 46(7):677-706.
DOI URL |
[76] |
CHEN H Y. External sulphur in IOCG mineralization: implications on definition and classification of the IOCG clan[J]. Ore Geology Reviews, 2013, 51:74-78.
DOI URL |
[77] | WILLIAMS P J, BARTON M D, JOHNSON D A, et al. Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin[J]. Economic Geology, 2005, 100:371-405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||