人工智能与地质应用 栏目所有文章列表
(按年度、期号倒序)
    一年内发表的文章 |  两年内 |  三年内 |  全部
Please wait a minute...
选择: 显示/隐藏图片
1. 基于深度学习的镜下岩石、矿物薄片识别
张利军, 鲁文豪, 张建东, 彭光雄, 卜建财, 唐凯, 谢渐成, 徐质彬, 杨海燕
地学前缘    2024, 31 (3): 498-510.   DOI: 10.13745/j.esf.sf.2023.6.7
摘要820)   HTML21)    PDF(pc) (3815KB)(271)    收藏

岩石、矿物显微图像的识别是岩矿鉴定的基础手段之一,对地质资源勘探有着重要意义。薄片显微图像一般情况下是在实验室中进行的,这项工作繁琐费时,需要大量的人力资源,并且准确性受限于鉴定者的经验。深度学习智能图像识别算法可以通过卷积神经网络提取显微图像的深层特征,从而达到对显微图像进行快速、准确分类识别的目的。本研究以PyCharm平台为深度学习框架,以中国科学数据网上的南京大学教学岩石薄片数据集、南华北石炭纪灰岩显微图像数据集等6个数据集为基础制作了可以应用于岩石-矿物显微图像分类识别训练的数据集,搭建具有针对性的VGG卷积神经网络模型,该模型具有对整个岩石薄片图像与单个矿物图像分别提取其深层中的特征信息的能力,从而达到识别岩石薄片的目的。实验结果显示,随着模型训练迭代的进行,预测值与真实值之间的损失函数在不断减小,识别准确率在不断增加,在分别经过50个和30个循环训练之后,模型的损失函数与识别准确率已经基本收敛。模型对显微图像测试集的识别成功率均高于90%,说明搭建的模型对于图像有很好的特征提取效果,可以完成岩石-矿物显微图像识别的任务。通过本文的研究,可以认识到,深度学习对于处理岩矿鉴定这样的任务有着高超的效率与准确度,开发相关的模型并运用到前端软件上,可以加快矿产资源勘探工作的速度,对于生产实践有着重要的应用意义。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
2. 基于集成量子神经网络的大地构造环境判别与分析
张佳文, 李明超, 韩帅, 张敬宜
地学前缘    2024, 31 (3): 511-519.   DOI: 10.13745/j.esf.sf.2023.3.3
摘要681)   HTML3)    PDF(pc) (1716KB)(88)    收藏

量子地球科学是一门崭新的跨学科前缘专业,量子计算和量子机器学习算法为地学大数据的深度挖掘与分析带来了新的契机。其中,量子神经网络是目前最具代表性的研究方向之一,在复杂多源数据处理方面的效率与准确率尤为突出。本文以大地构造环境判别这一关键问题为切入点,利用堆叠集成算法对量子神经网络(Stacking Quantum Neural Network, S-QNN)进行了改进,并分别实现了玄武岩、辉长岩和尖晶石的构造环境智能判别;同时与四种传统算法(SVM、RF、KNN和NB)、经典神经网络(ANN)和传统量子神经网络(QNN)进行对比。结果表明,集成后的S-QNN模型在3类情况下的准确率较最优的传统算法分别提升5.67%、6.19%和13.34%,较普通的QNN模型提升3.11%、4.99%和3.84%,且更具鲁棒性和通用性。该研究反映了所提出的S-QNN在数据处理中的优势,更证实了量子机器学习算法在地球科学研究中的适用性与潜力,为量子科学与地球科学的交叉融合提供了新思路。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
3. 机器学习:海底矿产资源智能勘探的新途径
刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧
地学前缘    2024, 31 (3): 520-529.   DOI: 10.13745/j.esf.sf.2023.5.90
摘要809)   HTML11)    PDF(pc) (3090KB)(146)    收藏

海底蕴藏着丰富的关键矿产资源,是当前研究的热点,也是未来产业新领域。随着海洋探测技术的不断进步,海底矿产勘探的数据量和数据维数急剧增加,给数据处理与解释带来了巨大困难和挑战。面对海量数据,传统的数据解释与分析方法暴露出许多问题。机器学习以其强大的自学能力,为无法解决或难以解决的问题提供了一系列智能分析决策方案,提高了数据分析的效率,是海底矿产资源智能勘探的新途径。近年来,机器学习在地球科学领域获得了广泛的关注和研究。为此,围绕机器学习技术应用于海底资源勘探技术,本文首先简要介绍了机器学习中经典的模型算法,然后详细阐述了机器学习在海底能源矿产和金属矿产两个方面的应用现状,最后总结了机器学习在海底矿产智能勘探领域的应用前景,指出了现有研究中存在的问题,提出了解决方案和未来的发展方向。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
4. 鄂尔多斯盆地延长组多油源贡献比例与分布规律:基于机器学习与可解释性研究
苏恺明, 徐耀辉, 徐旺林, 张月巧, 白斌, 李阳, 严刚
地学前缘    2024, 31 (3): 530-540.   DOI: 10.13745/j.esf.sf.2023.9.56
摘要875)   HTML9)    PDF(pc) (6942KB)(75)    收藏

鄂尔多斯盆地延长组发育多套潜在的烃源岩,但不同烃源岩之间生物标志物特征相似,常规油源对比方法效果不佳,相关认识长期存在争议。基于这样的问题,本文提出了一种基于深度学习的油源对比方案,将人工智能方法应用于油源对比研究,所开展的工作和认识有:(1)以延长组不同层位大量泥岩、页岩样品的42种生物标志物参数作为学习数据,构建了一种识别未知样品油源类别的深度神经网络模型,对长7泥页岩、长8—长10泥页岩的判别正确率分别达到了79.6%和83.0%,实现了延长组主要烃源岩生烃产物的有效区分;(2)通过模型分析了大量砂岩、原油样品的油源分类,统计了不同烃源岩对于延长组各个油层组原油的贡献比例,总结了它们的分布规律;(3)基于目前较为先进的置换特征重要性(PFI)算法,对所得模型进行了敏感性分析,初步揭示了延长组两类主要烃源岩的生物标志物差异。本文对于人工智能方法、技术在石油分子地球化学领域的发展具有积极的参考价值。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0