

地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 29-60.DOI: 10.13745/j.esf.sf.2025.7.80
$\boxed{\hbox{邓晋福}}$
收稿日期:2025-01-01
修回日期:2025-06-01
出版日期:2025-11-25
发布日期:2025-11-12
作者简介:邓晋福(1935—2021),男,教授,博士生导师,主要从事岩石物理化学、岩石大地构造等研究。
基金资助:$\boxed{\hbox{DENG Jinfu}}$
Received:2025-01-01
Revised:2025-06-01
Online:2025-11-25
Published:2025-11-12
摘要:
经典的板块构造理论认为大洋板块俯冲形成的沟-弧之间没有岩浆活动发生,且岩浆主要来源于洋俯冲带上面的幔楔。上世纪埃达克岩的提出,证实俯冲洋壳可以产生局部熔融。最近陆续发现洋高原(无震洋脊)和活动洋中脊等大洋板片的不同部位亦可发生俯冲,产生部分熔融形成岩浆弧。由此,本文讨论和分析了全球典型地区大洋不同部位俯冲形成的岩浆弧实例,提出了6种岩浆弧系统的类型:(1)老洋壳俯冲形成的岩浆弧系统;(2)洋高原俯冲形成的岩浆弧系统;(3)活动洋中脊俯冲形成的岩浆弧系统;(4)年轻洋壳俯冲形成的岩浆弧系统;(5)最年轻洋壳俯冲形成的岩浆弧系统;(6)经典板块形成的岩浆弧系统。并对这6种岩浆弧系统形成的机制,火成岩构造组合及其特征随时空的演变等进行了讨论和总结。这些研究可看作进一步研究封存在中国大陆内的岩浆弧系统的一种导向。对于限定大洋板片的性质,反演已湮灭的古代大洋板块组成提供了新的视角和途径,为洋板块地质学的研究提供了新的思路。
中图分类号:
$\boxed{\hbox{邓晋福}}$. 岩浆弧系统概述[J]. 地学前缘, 2025, 32(6): 29-60.
$\boxed{\hbox{DENG Jinfu}}$. Overview of magmatic arc system[J]. Earth Science Frontiers, 2025, 32(6): 29-60.
图1 晚始新世(约42 Ma)沿南北向转换断层转变为俯冲带的IBM洋内弧系统的构造简图(据文献[4])
Fig.1 Structural schematic diagram of the IBM intra-oceanic arc system, which transitioned into a subduction zone along a north-south transform fault during the Late Eocene (~42 Ma). Adapted from [4].
图2 垂直于转换断层/洋沟的地壳和上地幔剖面,表示IBM洋内弧俯冲作用开始之前(A)和俯冲作用开始之后(B)的构造,C为老洋壳-上地幔与幼年弧洋壳-上地幔连接处的地质关系(据文献[4])
Fig.2 The profiles of crust and upper mantle perpendicular to the transform fault/oceanic trench, representing the tectonic structures before (A) and after (B) the initiation of IBM intra-oceanic arc subduction. C represents the geological relationship at the junction between the old oceanic crust-upper mantle and the infant arc oceanic crust-upper mantle. Adapted from [4].
图4 西北加利福尼亚晚侏罗世蛇绿岩与有关岩石分布简图(据文献[4])
Fig.4 The schematic diagram of Late Jurassic ophiolite and related rocks in Northwest California. Adapted from [4].
图5 马里亚纳-小笠原和加利福尼亚系统的幼年弧之前、幼年弧和成熟弧阶段的比较(据文献[4]) 图例同图2和图3,IDS=独立岩墙群。
Fig.5 Comparison among before the infant arc, infant arc and mature arc of the Mariana-Bonin and California systems. Adapted from [4].
图6 IBM弧前岩石圈与Troodos(Cyprus)和Semail(Oman)蛇绿岩的地层示意剖面的对比(据文献[7])
Fig.6 Comparison of stratigraphic profiles between IBM fore-arc lithosphere and Troodos (Cyprus) and Semail (Oman) ophiolites. Adapted from [7].
图7 Nazca洋板块与南美大陆板块之间俯冲会聚系统概略图(引自文献[8])
Fig.7 Overview of the subduction convergence system between the Nazca oceanic plate and the South American continental plate. Adapted from [8].
图8 实验1:镶嵌洋高原的大洋板块向自由的上盘板块俯冲(据文献[8])
Fig.8 Experiment 1: the oceanic plate carrying an oceanic plateau subducts into the free overriding plat. Adapted from [8].
图9 实验4:有活塞(piston)向洋沟推进的上盘板块的俯冲模拟实验(据文献[8])
Fig.9 Experiment 4: Simulation experiment on subduction of an upper plate advancing towards the ocean trench via a piston mechanism. Adapted from [8].
图10 平板俯冲模拟过程的演化应用于安第斯俯冲带的简图(据文献[8])
Fig.10 Schematic sketches showing evolution of the flat slab subduction process illustrated by analog models, applied to the Andean subduction zone. Adapted from [8].
图12 由有浮力的加厚的洋高原的俯冲诱发的三阶段(从陡俯冲到平板俯冲)的演化与弧岩浆作用(据文献[11]) 图中等值线数值单位为℃。
Fig.12 Three-stage evolution( from steep to flat subduction ) and arc magmatism due to subduction of buoyant, overthickened oceanic crust. Adapted from [11].
图14 活动洋脊-转换断层分段系统与洋沟正交时的俯冲与复合板片窗形成(据文献[13])
Fig.14 Slab window formed by orthogonal subduction of segmented ridge-transform systems. Adapted from [13].
图15 俯冲角对活动洋脊与洋沟正交时形成的板片窗的影响(据文献[13])
Fig.15 Effects of slab dip angle on slab window produced by orthogohal intersection between ridge and trench. Adapted from [13].
图16 不同的板片俯冲倾角不同,以及脊与沟斜交时,复合板片窗的形成(据文献[13])
Fig.16 Formation of composite slab window when ridge and trench intersect obliquely,by different slab dip angles. Adapted from [13].
图18 与洋沟斜交的活动洋中脊俯冲形成的板片窗的移动给予的可能的岩浆效应(据文献[13])
Fig.18 Possible magmatic effects from migration of a slab window formed by subduction of an active ridge relative oblique to an oceanic trench. Adapted from [13].
图20 与智利活动洋中脊俯冲有关的新近纪和第四纪近沟岩浆活动(据文献[14])
Fig.20 Neogene-Quaternary near-trench magmatic activity associated with subduction of the active Chile Mid-Ocean Ridge. Adapted from [14].
|
表1 智利现今三联点地区洋脊和近沟岩浆活动的火成岩重要特征(据文献[14])
Table 1 Key igneous characteristics of magmatic activity from near-trench and ridge at the Chile Triple Junction. Adapted from [14].
|
图21 Taitao半岛、Taitao脊、SSVZ和AVZ的长英质火山岩(即表1之类型5和6)的对比(据文献[14])
Fig.21 Comparison of felsic volcanic rocks from Taitao peninsula, Taitao ridge, SSVZ and AVZ (type 5 and 6 in Table 1). Adapted from [14].
图22 智利活动洋中脊俯冲产生的脊-沟相互作用的演化模型(据文献[16])
Fig.22 Evolution model of ridge-trench interaction caused by subduction of the Chile active ridge. Adapted from [15].
图24 Patagonian碱性高原玄武岩与前陆褶皱逆冲带的分布图(据文献[17])
Fig.24 Distribution map of alkaline plateau basalts of Patagonian and foreland fold-thrust belts. Adapted from [17].
图25 洋俯冲岩石圈的年龄与弧火山岩的Y或Yb的相关图解(据文献[23]) No.1: 巴拿马(Panama),EI Valle和La Yeguada火山(25 Ma);No.2: 智利Cook岛(22 Ma);No.3: 菲律宾,Paracale侵入岩(20 Ma);No.4: Austral安第斯(18 Ma);No.5: 阿留申,阿拉斯加(Alaska)拖网标本(15 Ma);No.6: 阿拉斯加Skagway岩基(10 Ma);No.7: 北Kamchatka(9 Ma);No.8: 墨西哥,Sierra Madre(6 Ma);No.9: 智利,Patagonia(5 Ma);No.10: Guatemaia,Los Chocoyous(4 Ma);No.11: Mount St Helens;No.12: 墨西哥,Baja of California(1 Ma);No.13: Woodlark盆地(0.5 Ma)。12个与>25 Ma洋岩石圈俯冲相关的第四纪弧火山岩名称及其相关的俯冲岩石圈的年龄(括号内数值单位为Ma)在图25上均已写出。
Fig.25 Diagram between subducted oceanic lithosphere age and Y/Yb contents in arc volcanic rocks. Adapted from [23].
图30 不同年龄俯冲洋壳热模拟形成的热结(据文献[19])
Fig.30 Thermal structure derived from thermal simulation of subducting oceanic slabs with varying ages. Adapted from [19].
| [1] | 邓晋福, 苏尚国. 中国侵入岩大地构造图(1∶250万)[M]. 北京: 地质出版社, 2016. |
| [2] | 邓晋福, 苏尚国. 中国侵入岩大地构造[M]. 北京: 地质出版社, 2017: 1-500. |
| [3] | DE RONDE C E J, MASSOTH G J, BAKER E T, et al. Submarine hydrothermal venting related to volcanic arcs[J]. Society of Economic Geologists Special Publication, 2003, 10: 91-110. |
| [4] | STERN R J, BLOOMER S H. Subdction zone infancy:examples from the Eocene Izubonin-Mariana and Jurassic Cali-fornia arcs[J]. GSA Bulletin, 1992, 104: 1621-1636. |
| [5] | CRAWFORD A J, FALLON T J, GREEN D H. Classification, petrogenesis and tectonic setting of boninites[C]// Boninites and related rocks. Boston: Massachusetts, Unwin Hyman, 1989: 1-49. |
| [6] | DICKINSON W R, SEELY D R. Structure and stratigraphy of forearc regions[J]. American Association Petroleum Geologists Bulletin, 1979, 63: 2-31. |
| [7] | ISHIZUKA O, TANI K, REAGAN K. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue[J]. Elements, 2014, 10: 115-12. |
| [8] | ESPURT N, FUNICIELLO F, MARTINOD J, et al. Flat subduction dynamics and deformation of the South American Plate: insights from analog modeling[J]. Tectonics, 2008, 276: TC3011. |
| [9] | 邓晋福, 赵海玲, 莫宣学, 等. 中国大陆根-柱构造: 大陆动力学的钥匙[M]. 北京: 地质出版社, 1996: 1-110. |
| [10] | KAY S M, MPODOZIS C. Magmatism as a probe to the Neogene shallowing of Nazca plate beneath the modern Chil-ean flat-slab[J]. South American Earth Science, 2002, 15: 39-57. |
| [11] | GUTSCHER M A, MAURY R, EISSEN J P, et al. Can slab melding be caused by flat subduction?[J]. Geology, 2000, 28(6): 535-538. |
| [12] | 邓晋福. 岩石相平衡图解与岩石成因[M]. 武汉: 武汉地质学院出版社, 1987: 1-198. |
| [13] | THORKELSON D J. Subduction of diverging plates and the principles ofslab window formation[J]. Tectonophysics, 1996, 255(1): 47-63. |
| [14] | GUIVEL C, LAGABRIELLE Y, BOURGOIS J, et al. New geochemical constraints for the origin of ridge-subduction-related plutonic and volcanic suites from the Chile Triple Junction[J]. Tectonophysics, 1999, 311(1/2/3/4): 83-111. |
| [15] | 邓晋福, 刘翠, 狄永军, 等. 英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)岩石构造组合及其亚类划分:讨论[J]. 地学前缘, 2018, 25(6): 42-50. |
| [16] | LAGABRIELLE Y, GUIVEL C, MAURY R C, et al. Magmatic-tectonic affects of high thermal regime at the site of active ridge subduction: the Chile Triple Junction model[J]. Tectonophysics, 2000, 326(3): 255-268. |
| [17] | RAMOS V A, KAY S M. Southern Patagonian plateau basalts and deformation: backarc testimony of ridge collisions[J]. Tectonophysics, 1992, 205(1/2/3): 261-282. |
| [18] | CONDIE K C. Plate tectonics and crustal evolution[M]. New York: Pergamon, 1982: 1-310. |
| [19] | PEACOCK S M, RUSHMER T, THOMPSONA B. Partial melting of subducting oceanic crust[J]. Earth and Planetary Science Letters, 1994, 121: 227-244. |
| [20] | IWAMORI H. Thermal effects of ridge subduction and its implications for the origin of granitic batholith andpaired metamorphic belts[J]. Earth and Planetary Science Letters, 2000, 181: 131-144. |
| [21] | GILL J B. Orogenic andesites and platetectonics[M]. Berlin: Springer-Verlag, 1981: 1-358. |
| [22] | KAY R W. Aleutian magnesian andesites: melts from subducted Pacific oceanic crust[J]. Journal of Volcanology and Geothermal Research, 1978, 4(4): 117-132. |
| [23] | DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. |
| [24] | 张旗, 钱青, 王二七, 等. 燕山中晚期的“中国东部高原”:埃达克岩的启示[J]. 地质科学, 2001, 36(2): 248-255. |
| [25] | 张旗, 王焰, 钱青, 等. 中国东部燕山期埃达克岩的特征及其构造-成矿意义[J]. 岩石学报, 2001, 17(2): 236-244. |
| [26] | DRUMMOND M S, DEFANT M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melt-ing: archean to modern comparisons[J]. Journal of Geophysical Research, 1990, 95(B13): 21503-21521. |
| [27] | DEFANT M J, KEPEZHINSKAS P. Evidence suggests slab melting in arc magmas[J]. EoS, Transactions American Geophysical Union, 2001, 82(6): 65-80. |
| [28] | SAJONA F G, MAURY R C, BELLON H, et al. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, western Midanao (Philippines)[J]. Journal of Petrology, 1996, 37(3): 693-726. |
| [29] | KEPEZHINSKAS P, DEFANT M J, DRUMMOND M S. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka Xenoliths[J]. Geochimica et Cosmochimica Acta, 1996, 60(7): 1217-1229. |
| [30] | 邓晋福, 冯艳芳, 狄永军, 等. 岩浆弧火成岩构造组合与洋陆转换[J]. 地质论评, 2015, 61(3): 473-483. |
| [31] | SHERVAIS J W. Tonalites, trondhjemite, and diorites of the Elder Creek ophiolite, California: low pressure slab melting and reaction with the mantle wedge[C]// Geological Society of America Special Paper, Boulder: Geological Society of America, 2008, 438: 113-132. |
| [1] | 潘桂棠, 任飞, 张克信, 肖庆辉, 陆松年, 任光明, 庞维华, 崔晓庄, 彭智敏, 张向飞. 洋板地质学研究展望:聚焦中国及邻区大洋俯冲消减带地质重建[J]. 地学前缘, 2025, 32(6): 61-88. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||