

地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 9-28.DOI: 10.13745/j.esf.sf.2025.8.62
肖庆辉1(
), 刘勇1,*(
), 李廷栋1, 潘桂棠2, 陆松年3, 丁孝忠1, 张克信4, 庞建峰1, 邱瑞照5, 赵国春6, 张恒1, 程扬1, 范玉须1, 付利1
收稿日期:2025-06-12
修回日期:2025-08-13
出版日期:2025-11-25
发布日期:2025-11-12
通信作者:
刘勇
作者简介:肖庆辉(1939—),男,研究员,博士生导师,构造地质学专业,从事大地构造学和中国岩石圈三维结构研究。E-mail: qinghuixiao@126.com
基金资助:
XIAO Qinghui1(
), LIU Yong1,*(
), LI Tingdong1, PAN Guitang2, LU Songnian3, DING Xiaozhong1, ZHANG Kexin4, PANG Jianfeng1, QIU Ruizhao5, ZHAO Guochun6, ZHANG Heng1, CHENG Yang1, FAN Yuxu1, FU Li1
Received:2025-06-12
Revised:2025-08-13
Online:2025-11-25
Published:2025-11-12
Contact:
LIU Yong
摘要:
中国东亚大陆中、新生代陆缘构造成因至今没有统一认识,分歧仍然很大。本文依据洋板块地质思维重新研究中国东亚大陆中、新生代陆缘构造成因后发现:中国东亚大陆中、新生代陆缘洋板块俯冲作用不仅普遍存在,而且一直俯冲到400~660 km深的地幔过渡带,并在那里滞留堆积构成具有造壳成陆功能的新的热动力学系统,或称第二大陆动力学系统,有人称之为第二大陆。它控制了中国中、新生代大陆的形成与演变。另一个发现是在中国大陆俯冲增生杂岩带内发现很多洋岛、海山、洋底高原等大洋遗迹,它们与表征洋板块俯冲作用的岛弧等共存在同一个俯冲带上,表明中国大陆的形成与演变普遍经受过曾存在过的五大古洋(古亚洲洋、特提斯洋、古太平洋、鄂霍茨克洋、华南洋)洋板块俯冲作用制约。第三个发现是,在内蒙古西拉木伦地区俯冲增生杂岩带中发现了与3种不同成因体制——“地幔柱”型、洋中脊型和岛弧型有关的洋岛、海山,表明古大洋演化过程中的构造背景多样而复杂,包括岛弧、热点、地幔柱、弧后盆地及洋中脊等各种构造背景。岛弧环境明显与板块俯冲有关,而热点、海山明显与地幔柱有关。这说明古大洋在演化过程中,洋内俯冲作用和软流圈地幔(柱)上涌两种完全对立的构造体制同时共存并相互作用。据此,我们提出东亚中、新生代造山带可能是东亚中、新生代造山带之下的地幔过渡带或所谓第二大陆引发的洋内俯冲+板内软流圈地幔(柱)上涌复合作用而形成的系统。因此,岛弧型洋岛、海山的发现为中国洋板块地质建立东亚中、新生代造山带洋内俯冲+板内软流圈地幔(柱)上涌同时共存的理论模型提供了重要科学依据。东亚中新生代造山带之下的地幔过渡带或所谓第二大陆的存在使中国大陆形成与演化、成矿作用潜力评价和战略找矿预测都可能要被重新认识。
中图分类号:
肖庆辉, 刘勇, 李廷栋, 潘桂棠, 陆松年, 丁孝忠, 张克信, 庞建峰, 邱瑞照, 赵国春, 张恒, 程扬, 范玉须, 付利. 中国东部陆缘中、新生代洋板块深地质作用追踪[J]. 地学前缘, 2025, 32(6): 9-28.
XIAO Qinghui, LIU Yong, LI Tingdong, PAN Guitang, LU Songnian, DING Xiaozhong, ZHANG Kexin, PANG Jianfeng, QIU Ruizhao, ZHAO Guochun, ZHANG Heng, CHENG Yang, FAN Yuxu, FU Li. Tracing the deep geological processes of the Mesozoic-Cenozoic oceanic plate on the continental margin of the East Asian continent in China[J]. Earth Science Frontiers, 2025, 32(6): 9-28.
图2 普遍存在的大陆和洋区弧俯冲作用(据文献[12]修改) 中国大陆内已发现上百条俯冲增生杂岩带。图中数字为中国大陆内已发现的俯冲增生杂岩带编号。1—乌拉利亚语;2~6—中亚(2—贝加尔湖-穆亚;3—叶尼塞-外贝加尔-北蒙古; 4—阿勒泰-萨延-西北蒙古;5—额齐斯-宰山;6—天山);7—南内蒙古;8—蒙古-鄂霍次克;9—锡霍特-阿林; 10—上霍扬斯克;11—鄂霍次克-楚科奇;12—南阿努伊;13—西堪察加半岛;14—帕米尔-兴都库什;15—昆仑-秦岭; 16—西藏-喜马拉雅山;17—华南。
Fig.2 Ubiquitous subduction in continental and oceanic arcs. Modified after [12]. 1—Uralian; 2-6—Central Asian (2—Baikal-Muya; 3—Yenisey-Transbaikalia-North Mongolia; 4— Altay-Sayan-NW Mongolia; 5—Irtysh-Zaysan; 6—Tienshan); 7—South Inner Mongolia; 8—Mongol-Okhotsk; 9—Sikhote-Alin; 10—Verkhoyansk; 11—Okhotsk-Chukotka; 12—South Anuy; 13—West Kamchatka; 14—Pamir-Hindukush; 15—Kunlun-Qinling; 16—Tibet-Himalaya; 17—South China.
图4 菲律宾海板块内的五条洋内弧向日本本州岛和东亚大陆之下发生俯冲作用(据文献[8]修改)
Fig.4 Subduction of five intra-oceanic arcs within the Philippine Sea Plate beneath Japan’s Honshu and East Asian continent. Modified after [8].
图5 菲律宾海板块内的五条洋内弧向日本本州岛和东亚大陆之下发生俯冲作用,而东亚大陆之下大地幔楔则向东日本本州岛流动(据文献[13]修改)
Fig.5 Subduction of five intra-oceanic arcs beneath Honshu and East Asia, with eastward flow of the large mantle wedge. Modified after [13].
| 序号 | 名称 | 俯冲或增生弧 | 序号 | 名称 | 俯冲或增生弧 |
|---|---|---|---|---|---|
| 1 | Shirshov-Bowers | 不清楚 | 21 | North Borneo-Sulu-Zamboanga | 不清楚 |
| 2 | Alaska-Aleutians | 不清楚 | 22 | Halmahera | 增生 |
| 3 | S. Kamchatka | 不清楚 | 23 | Sabgihe | 增生 |
| 4 | Kuriles | 不清楚 | 24 | Sulawesi East Arm | 增生 |
| 5 | Hidaka | 不清楚 | 25 | Sulawesi West Arm | 增生 |
| 6 | NE Japan | 不清楚 | 26 | Sula | 不清楚 |
| 7 | Izu-Bonin | 部分增生 | 27 | Banda | 不清楚 |
| 8 | East Mariana | 不清楚 | 28 | Sunda (Java-Flores) | 不清楚 |
| 9 | West Mariana | 不清楚 | 29 | Sunda (Sumatra) | 不清楚 |
| 10 | Sw Japan | 不清楚 | 30 | Bismarck | 不清楚 |
| 11 | Kyushu-Palao | 俯冲 | 31 | New Britain | 不清楚 |
| 12 | Amami | 俯冲 | 32 | Bewani-Torricelli | 不清楚 |
| 13 | Daito | 俯冲 | 33 | Central Papua New Guinea | 不清楚 |
| 14 | Okion-Daito | 俯冲 | 34 | Solomon | 不清楚 |
| 15 | Ryu-Kyu | 不清楚 | 35 | Vanuatu | 不清楚 |
| 16 | West Philippines | 不清楚 | 36 | Tofua (Tonga) | 不清楚 |
| 17 | Luzon | 不清楚 | 37 | Kermadec | 不清楚 |
| 18 | Negros | 不清楚 | 38 | New Zealand | 不清楚 |
| 19 | SE Mindanao | 不清楚 | 39 | Macquarie | 不清楚 |
| 20 | Palawan | 不清楚 |
表1 西太平洋区域的洋内弧 (据文献[8]修改)
Table 1 Intra-oceanic arcs in the western Pacific. Modified after [8].
| 序号 | 名称 | 俯冲或增生弧 | 序号 | 名称 | 俯冲或增生弧 |
|---|---|---|---|---|---|
| 1 | Shirshov-Bowers | 不清楚 | 21 | North Borneo-Sulu-Zamboanga | 不清楚 |
| 2 | Alaska-Aleutians | 不清楚 | 22 | Halmahera | 增生 |
| 3 | S. Kamchatka | 不清楚 | 23 | Sabgihe | 增生 |
| 4 | Kuriles | 不清楚 | 24 | Sulawesi East Arm | 增生 |
| 5 | Hidaka | 不清楚 | 25 | Sulawesi West Arm | 增生 |
| 6 | NE Japan | 不清楚 | 26 | Sula | 不清楚 |
| 7 | Izu-Bonin | 部分增生 | 27 | Banda | 不清楚 |
| 8 | East Mariana | 不清楚 | 28 | Sunda (Java-Flores) | 不清楚 |
| 9 | West Mariana | 不清楚 | 29 | Sunda (Sumatra) | 不清楚 |
| 10 | Sw Japan | 不清楚 | 30 | Bismarck | 不清楚 |
| 11 | Kyushu-Palao | 俯冲 | 31 | New Britain | 不清楚 |
| 12 | Amami | 俯冲 | 32 | Bewani-Torricelli | 不清楚 |
| 13 | Daito | 俯冲 | 33 | Central Papua New Guinea | 不清楚 |
| 14 | Okion-Daito | 俯冲 | 34 | Solomon | 不清楚 |
| 15 | Ryu-Kyu | 不清楚 | 35 | Vanuatu | 不清楚 |
| 16 | West Philippines | 不清楚 | 36 | Tofua (Tonga) | 不清楚 |
| 17 | Luzon | 不清楚 | 37 | Kermadec | 不清楚 |
| 18 | Negros | 不清楚 | 38 | New Zealand | 不清楚 |
| 19 | SE Mindanao | 不清楚 | 39 | Macquarie | 不清楚 |
| 20 | Palawan | 不清楚 |
图6 洋板块俯冲增生形成新大陆的各构造单元示意图(据文献[14]修改)
Fig.6 Schematic diagram showing the tectonic elements of a new continent formed by oceanic plate subduction and accretion. Modified after [14].
图8 帕米尔—日本地震层析成像剖面图(据文献[17-18]修改) 在东亚地区发现大型罕见的热地幔楔低速带,由几个含水地幔软流上涌流构成。这些上涌流可以向下追踪到410~660 km深地幔过渡带或第二大陆,但是不跨过660 km或更深处。这就是第二大陆地幔软流上涌柱连体。
Fig.8 Seismic tomographic profile from the Pamir to Japan. Modified after [17-18].
图9 川滇地块—伊豆海沟地震层析成像剖面图(据文献[17]修改) 从图上可见太平洋板块以约45°倾角向下俯冲到地幔过渡带。
Fig.9 Seismic tomographic profile from the Chuan-Dian Block to the Izu Trench. Modified after [17].
图11 印度板块—羌塘地块地震层析成象剖面图(据文献[17]修改) 印度板块俯冲在西藏高原之下深度200~300 km处,角度低,近水平,印度板块俯冲的水平距离约为500 km,北缘到达柴达木地块。
Fig.11 Seismic tomographic profile from the India Plate to the Qiangtang Block. Modified after [17].
图12 印度板块—柴达木盆地地震层析成像剖面图(据文献[17]修改) 地幔过渡带和下地幔中可见印亚俯冲碰撞之前的晚中生代特提斯洋俯冲残留。
Fig.12 Seismic tomographic profile from the India Plate to the Qaidam Basin. Modified after [17].
图13 印度—准噶尔地震层析成像剖面图(据文献[17]修改) 印度板块低角度俯冲到西藏高原之下200~300 km处,在地幔过渡带中未见到印度板片俯冲停滞堆积成新的热动力层。
Fig.13 Seismic tomographic profile from the India Plate to the Junggar Basin. Modified after [17].
图16 地幔过渡带或第二大陆中的各种岩石类型含有的放射性元素对比图(据文献[12]修改) 地幔过渡带或第二大陆的放射性元素含量高出周围的上地幔放射性元素含量的几百到1 000倍,因此它是上地幔中的热动力源,在上地幔加热、上涌和产生地幔柱中起着关键作用。
Fig.16 Comparison of radiogentic elements in various rock types from the mantle transition zone or “Second Continent”. Modified after [12].
图17 东亚大陆之下地幔过渡带结构及其造壳成陆功能的东西向剖面图(据文献[19-20]修改)
Fig.17 Mantle transition zone beneath East Asia: An east-west transect illustrating its structure and role in crustal growth and continent formation. Modified after [19-20].
图18 中国东部大陆陆缘洋板块向下俯冲到地幔过渡带中并停滞堆积的示意图(据文献[16]修改)
Fig.18 Schematic diagram illustrating the subduction, stagnation, and accumulation of an oceanic plate beneath eastern China to the mantle transition zone. Modified after [16].
图19 第二大陆俯冲堆积示意图(据文献[16]修改) 地表岩浆弧和沉积物构成的陆壳板块或TTG板块俯冲下去后堆积在660 km处地幔过渡带中,部分也可能堆积在核幔边界上。
Fig.19 Schematic diagram of subduction and accumulation in the “Second Continent”. Modified after [16].
图20 地幔过渡带产生含水地幔底辟功能模型示意图(据文献[21]修改)
Fig.20 Schematic model illustrating the generation of hydrated mantle diapirs from the mantle transition zone. Modified after [21].
图21 指示地幔过渡带或第二大陆热场触发周围地幔发生部分熔融且形成软流底辟上涌并在地幔加热熔融、上涌和地壳发生裂谷作用中起到与洋中脊类似的大陆动力学关键作用的示意图(据文献[29]修改)
Fig.21 A schematic mode of mantle dynamics analogous to mid-ocean ridges: From thermal anomalies in the transition zone to asthenspheric upwelling and continental rifting. Modified after [29].
图23 东亚位于太平洋、印度洋四条双向俯冲带夹持的独特的三角带,四条双向俯冲带为其下地幔过渡带提供了大量的水并使其成为全球最富含水的地幔过渡带(据文献[27]修改)
Fig.23 East Asia as a unique triangular zone: Hydrating the mantle transition zone via bidirectional subduction. Modified after [27].
图24 北冰洋将消失、亚洲与美洲相连示意图(据文献[12]修改)
Fig.24 Diagram illustrating the future closure of the Arctic Ocean and the formation of a land bridge between Asia and America. Modified after [12].
图25 表示菲律宾海板块上的五条洋内弧向日本本州岛之下俯冲且没有任何增生的大地构造背景及其剖面(据文献[44]修改)
Fig.25 Tectonic setting and profile showing five intra-oceanic arcs on the Philippine Sea Plate subducting beneath Japan’s Honshu without accretion. Modified after [44].
图26 本州岛中部大陆地壳的厚度只有约30~35 km且没有任何增生的剖面(据文献[43]修改)
Fig.26 A crustal profile of 30-35 km thickness with no accretion in Central Honshu Island. Modified after [43].
图29 日本东北及其周边俯冲板片上面发育的地堑构造把海沟浊积岩增生杂岩运送到地幔深处(据文献[43]修改)
Fig.29 Graben structures on the subducting slab transporting trench turbidites and the accretionary complex into the deep mantle. Modified after [43].
图30 日本东北及其周边的四个断代地质构造单元划分及上面发育的地堑把浊积岩运送到深地幔中(据文献[12]修改) 构造侵蚀作用的意义是使地幔过渡带的TTG物质总量大增而使其具有造壳成陆的功能。
Fig.30 Tectonic framework of Northeast Japan: Four chronostratigraphic units and associated graben systems transporting turbidites to the deep mantle. Modified after [12].
| [1] | CHENG Y, XIAO Q H, LI T D, et al. Geochemistry and tectonic history of seamount remnants in the Xingshuwa Subduction Accretionary Complex of the Xar Moron area, eastern margin of the Central Asian Orogenic Belt[J]. Acta Geologica Sinica, 2021, 95(4): 1086-1098. |
| [2] | OSANAI Y, KOMATSU M, OWADA M. Metamorphism and granite genesis in the Hidaka metamorphic belt, Hokkaido, Japan[J]. Journal of Metamorphic Geology, 1991, 9: 111-124. |
| [3] | WHITE W M. Oceanic island basalts and mantle plumes: the geochemical perspective[J]. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 133-160. |
| [4] | SAFONOVA I, MARUYAMA S. Asia: a frontier for a future supercontinent[J]. International Geology Review, 2014, 56: 1051e1071. |
| [5] | DEWEY J F, WINDLEY B F. Growth and differentiation of the continental crust[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 301(1461): 189-206. |
| [6] | FYFE W S. The evolution of the Earth’s crust: modern plate tectonics to ancient hot spot tectonics[J]. Chemical Geology, 1978, 23: 89-114. |
| [7] | ARMSTRONG R L. Radiogenic isotopes: the case for crustal recycling on anearsteady state nocontinental-growth Earth[J]. Philosophical Transactions of the Royal Society of London 1981, A301: 443-472. |
| [8] | YAMAMOTO S, SENSHU H, RINO S, et al. Granite subduction: arc subduction, tectonic erosion and sediment subduction[J]. Gondwana Research, 2009, 15(3/4): 443-453. |
| [9] | RINO S, KON Y, SATO W, et al. The Grenvillian and Pan-African orogens: world’s largest orogenies through geologic time, and their implications on the origin of superplume[J]. Gondwana Research, 2008, 14: 51-72. |
| [10] | RICHARDSON W P, OKAL E A, VAN DER LEE S. Rayleigh-wave tomography of the Ontong-Java Plateau[J]. Physics of the Earth and Planetary Interiors, 2000, 118(1/2): 29-51. |
| [11] | SENO T, MARUYAMA S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102: 53-84. |
| [12] | SAFONOVA I Y, MARUYAMA S. Asia: a frontier for a future supercontinent Amasia[J]. International Geology Review, 2014, 56(9): 1051-1071. |
| [13] | MARUYAMA S, HASEGAWA A, SANTOSH M, et al. The dynamics of big mantle wedge, magma factory, and metamorphic-metasomatic factory in subduction zones[J]. Gondwana Research, 2009, 16: 414-430. |
| [14] | OMORI S, SENSU H, KAWAI K, et al. Pacific-type orogens: new concepts and variations inspace and time from present to past[J]. Journal of Geography, 2011, 120: 115-223(in Japanese with English abstract and captions). |
| [15] | KAWAII K, TSUCHIYA T, TSUCHIYA J, et al. Lost primordial continents[J]. Gondwana Research, 2009, 16: 581-586. |
| [16] | KAWAII K, YAMAMOTO S, TSUCHIYA T, et al. The seond continent: existence of granitic continental materials around the bottom of the mantle transition zone[J]. Geoscience Frontiers, 2013, 4: 1-6. |
| [17] | HU A Q, WEI G J, ZHANG J B, et al. SHRIMP U-Pb ages for zircons of the amphibolites and tectonic evolution significance from the Wenquan domain in the West Tianshan Mountains, Xinjiang, China[J]. Acta Petrologica Sinica, 2008, 24(12): 2731-2740 (in Chinese with English abstract). |
| [18] | ZHAO W P, JIA Z K, WEN Z G, et al. The discovery of the blueschists from the Baerluke ophiolitic melange belt in Western Junggar, Xinjiang[J]. Northwest Geology, 2012, 45(2): 136-138 (in Chinese with English abstract). |
| [19] | TAIRA K, PICKERING T, WINDLEY B F, et al. Accretion of Japanese island arcs and implications for the origin of Archean greenstone belts[J]. Tectonics, 1992, 11: 1224-1244. |
| [20] | ZHAO G, SUN M, WILDE S A, et al. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67: 91-123. |
| [21] | SENSHU H, MARUYAMA S, RINO S, et al. Role of tonalite-trodhjemite-granite (TTG) crust subduction on the mechanism supercontinent breakup[J]. Gondwana Research, 2009, 15(3): 433-442. |
| [22] | KANEKO Y, MARUYAMA S, KADARUSMAN A, et al. On-going orogeny in the outer-arc of the Timor-Tanimbar region, eastern Indonesia[J]. Gondwana Research, 2007, 11: 218-233. |
| [23] | BRENAN J M, SHAW H F, PHINNEY D L, et al. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts[J]. Earth and Planetary Science Letters, 1994, 128(3): 327-339. |
| [24] | PRYTULAK J, ELLIOTT, et al. TiO2 enrichment in ocean island basalts[J]. Earth and Planetary Science Letters, 2007, 263(3): 388-403. |
| [25] | SAUNDERS A. Putting continents asunder[J]. Nature, 1988, 332(6166): 679. |
| [26] | McCULLOCH M T, GAMBLE J A. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 1991, 102(3): 358-374. |
| [27] | MARUYAMA S, SANTOSH M, ZHAO D, et al. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary[J]. Gondwana Research, 2007, 11: 7-37. |
| [28] | SANTOSH M, MARUYAMA S, KOMIYA T, et al. Orogens in the evolving Earth: from surface continents to ‘lost continents’ at the core-mantle boundary[J]. Geological Society, London, Special Publications, 2010, 338: 77-116. |
| [29] | HONG K C, WANG S F, ZHANG S W, et al. Oligocene melting of subducted mélange and its mantle dynamics in northeast Asia[J]. Geology, 2024, 52: 539-544. |
| [30] | CRUZ U A M, MARSCHALL H R, GAETANI G A, et al. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs: an experimental study[J]. Geology, 2018, 46(4): 343-346. |
| [31] | GERYA T V, YUEN D A. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones(Article)[J]. Earth and Planetary Science Letters, 2003, 212(1): 47-62. |
| [32] | MARSCHALLCA H R, SCHUMACHER J C. Arc magmas sourced from mélange diapirs in subduction zones[J]. Nature Geoscience, 2012, 5(12): 862-867. |
| [33] | CODILLO E A, Le ROUX V, KLEIN B, et al. The ascent of subduction zone mélanges: experimental constraints on mélange rock densities and solidus temperatures[J]. Earth and Planetary Science Letters, 2023, 621: 118-398. |
| [34] | HALL P S, KINCAID, et al. Diapiric flow at subduction zones: a recipe for rapid transport[J]. Science, 2001, 292(5526): 2472-2475. |
| [35] | REBAZACA A M, MALLIK A, STRAUB S M. Multiple episodes of rock-melt reaction at the slab-mantle interface: formation of high silica primary magmas in intermediate to hot subduction zones[J]. Journal of Petrology, 2023, 64(3): 1408-1424. |
| [36] | HASEGAWA A, NAKAJIMA J, KITA S, et al. Anomalous deepening of a belt of intraslab earthquakes in the Pacific slab crust under Kanto, central Japan: possible anomalous thermal shielding, dehydration reactions, and seismicity caused by shallower cold slab material[J]. Geophysical Research Letters, 2007, 34: L09305. |
| [37] | KLEIN, BENJAMIN Z, BEHN, et al. On the evolution and fate of sediment diapirs in subduction zones[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(11): e2021GC009873. |
| [38] | RYDELEK P A, SACKS I S. Asthenospheric viscosity inferred from correlated land-sea earthquakes in Northeast Japan[J]. Nature, 1988, 336(6196): 234-237. |
| [39] | ZHAO W, MECHIE J, BROWN L D, et al. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data[J]. Geophysical Journal International, 2001, 145(2): 486-498. |
| [40] | DONG Y, XIONG S, WANG F, et al. Triggering of episodic back-arc extensions in the Northeast Asian continental margin by deep mantle flow[J]. Geology, 2023, 51(2): 193-198. |
| [41] | WADA I, HE J H, HASEGAWA A, et al. Mantle wedge flow pattern and thermal structure in Northeast Japan: effects of oblique subduction and 3-D slab geometry[J]. Earth and Planetary Science Letters, 2015, 426: 76-88. |
| [42] | WANG Z W, ZHAO D P. 3D anisotropic structure of the Japan subduction zone[J]. Science Advances, 2021, 7(4): eabc9620. |
| [43] | MARUYAMA S, SANTOSH M, ZHAO D, et al. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary[J]. Gondwana Research, 2007, 11: 7-37. |
| [44] | ISOZAKI Y, AOKI K, NAKAMA T, et al. New insight into a subduction-related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands[J]. Gondwana Research, 2010, 18(4): 709. |
| [45] | NAKAJIMA, TAKASHI. The Ryoke plutonometamorphic belt: crustal section of the Cretaceous Eurasian continental margin[J]. Lithos, 1994, 33(1): 51-66. |
| [1] | 万天丰. 论全球岩石圈板块构造的动力学机制[J]. 地学前缘, 2018, 25(2): 320-335. |
| [2] | 任建业 于建国 张俊霞. 济阳坳陷深层构造及其对中新生代盆地发育的控制作用[J]. 地学前缘, 2009, 16(4): 117-137. |
| [3] | 李文勇 曾祥辉 王信国 安战锋. 北黄海盆地构造运动学解析[J]. 地学前缘, 2009, 16(4): 74-86. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||