地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 278-289.DOI: 10.13745/j.esf.sf.2024.11.9
陈耿荣1,2(), 李靖1,*(
), 孙东3, 周世新1, 柳亮亮1,2, 王昊1,2, 庞文君1,2, 吴雨航1,2
收稿日期:
2024-06-18
修回日期:
2024-10-21
出版日期:
2025-09-25
发布日期:
2025-10-14
通信作者:
李靖
作者简介:
陈耿荣(2000—),男,硕士研究生,主要从事氦气成藏地质学研究。E-mail: chengengrong04@163.com
基金资助:
CHEN Gengrong1,2(), LI Jing1,*(
), SUN Dong3, ZHOU Shixin1, LIU Liangliang1,2, WANG Hao1,2, PANG Wenjun1,2, WU Yuhang1,2
Received:
2024-06-18
Revised:
2024-10-21
Online:
2025-09-25
Published:
2025-10-14
Contact:
LI Jing
摘要:
四川盆地是我国重要的天然气生产基地。盆地内的威远气田氦浓度高,是我国最早实现氦气工业化利用的天然气田。安岳气田与威远气田同处乐山—龙女寺古隆起带,但其氦气含量显著低于后者。为了探究安岳气田贫氦的原因,研究系统分析、对比了安岳气田与威远气田天然气样品的气体组分和氮、稀有气体同位素特征,结合区域地质背景,剖析了安岳气田氦气成藏条件的制约因素。安岳气田天然气氦浓度为0.012%~0.089%,含氦样品(He>0.05%)仅占10%,集中分布于高石梯区块西缘的灯二段;含氦样品和贫氦样品显示不同的氦氮耦合富集趋势和氮同位素特征,前者与威远气田特征相近,其氦源可能为基底中酸性变质岩,后者氦氮来源可能为筇竹寺组泥页岩;氦源条件是制约安岳气田氦气富集的主要因素。此外,安岳气田天然气资源量巨大,气藏中充注的大量烃类气体对氦气具有严重的稀释作用;稀有气体同位素证据表明安岳气田中的气水作用明显弱于威远气田,相对平缓的构造圈闭和高储层压力制约了氦气通过地层水脱溶富集,以上两点也是安岳气田贫氦的重要原因。
中图分类号:
陈耿荣, 李靖, 孙东, 周世新, 柳亮亮, 王昊, 庞文君, 吴雨航. 四川盆地安岳气田贫氦原因探究[J]. 地学前缘, 2025, 32(5): 278-289.
CHEN Gengrong, LI Jing, SUN Dong, ZHOU Shixin, LIU Liangliang, WANG Hao, PANG Wenjun, WU Yuhang. Cause of helium-poor in Anyue gas field, Sichuan Basin[J]. Earth Science Frontiers, 2025, 32(5): 278-289.
井位 | 产层 | 产层压力/ MPa | 主要气体组分/% | ||||||
---|---|---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | He | CO2 | N2 | H2S | |||
GS125 | 灯四段 | 57.09 | 90.39 | 0.04 | 0.01 | 0.026 | 6.45 | 2.32 | 0.22 |
GS018-2-H1 | 灯四段 | — | 92.08 | 0.05 | 0.00 | 0.023 | 6.41 | 1.07 | 0.03 |
GS018-4-H1 | 灯四段 | 56.57 | 91.57 | 0.05 | 0.00 | 0.025 | 6.59 | 1.39 | 0.09 |
GS103-C1 | 灯四段 | 38.82 | 92.87 | 0.05 | 0.01 | 0.020 | 5.53 | 1.13 | 0.32 |
GS001-H39 | 灯四段 | 56.70 | 93.16 | 0.06 | 0.01 | 0.017 | 5.32 | 0.75 | 0.58 |
GS001-X40 | 灯四段 | 55.50 | 91.49 | 0.04 | 0.00 | 0.017 | 6.22 | 1.08 | 0.66 |
GS3 | 灯四段 | 53.39 | 93.19 | 0.16 | 0.06 | 0.020 | 4.06 | 0.81 | 1.48 |
MX8 | 灯四段 | 56.77 | 95.90 | 0.32 | 0.10 | 0.013 | 2.04 | 0.73 | 0.34 |
MX019-H2 | 灯四段 | 56.99 | 92.35 | 0.07 | 0.02 | 0.022 | 4.96 | 0.84 | 1.20 |
MX022-H33 | 灯四段 | 56.44 | 93.21 | 0.04 | 0.00 | 0.020 | 5.01 | 1.62 | 0.08 |
MX118 | 灯四段 | 59.47 | 92.55 | 0.05 | 0.00 | 0.021 | 5.25 | 1.04 | 0.95 |
GS001-X41 | 灯四段 | 55.54 | 92.39 | 0.04 | 0.00 | 0.019 | 5.50 | 0.75 | 1.25 |
GS001-H26 | 灯四段 | 55.74 | 92.14 | 0.05 | 0.00 | 0.021 | 4.98 | 1.04 | 1.75 |
GS001-X22 | 灯四段 | 56.59 | 92.68 | 0.04 | 0.00 | 0.025 | 5.06 | 1.33 | 0.82 |
GS001-X25 | 灯四段 | 56.41 | 92.35 | 0.04 | 0.00 | 0.019 | 5.86 | 0.70 | 1.00 |
GS001-X29 | 灯四段 | — | 92.71 | 0.04 | 0.00 | 0.021 | 5.53 | 0.94 | 0.71 |
GS001-X3 | 灯四段 | 56.47 | 92.54 | 0.04 | 0.00 | 0.020 | 6.58 | 0.17 | 0.63 |
GS001-X35 | 灯四段 | 56.04 | 92.82 | 0.04 | 0.00 | 0.019 | 5.21 | 0.78 | 1.10 |
GS001-X36 | 灯四段 | 58.21 | 93.01 | 0.04 | 0.00 | 0.022 | 5.37 | 1.04 | 0.48 |
GS001-H15 | 灯四段 | — | 92.48 | 0.04 | 0.00 | 0.020 | 5.20 | 1.02 | 1.08 |
GS135 | 灯二段 | 52.95 | 93.03 | 0.14 | 0.04 | 0.021 | 4.98 | 0.77 | 0.86 |
GS131X | 灯二段 | 57.18 | 92.59 | 0.04 | 0.00 | 0.040 | 5.21 | 1.55 | 0.51 |
GS009-H1 | 灯二段 | 56.45 | 92.32 | 0.20 | 0.06 | 0.036 | 5.21 | 1.10 | 0.54 |
GS009-H2 | 灯二段 | 56.70 | 92.67 | 0.12 | 0.04 | 0.061 | 4.87 | 1.83 | 0.12 |
GS009-H3 | 灯二段 | 53.20 | 92.66 | 0.04 | 0.00 | 0.054 | 4.83 | 1.98 | 0.26 |
GS009-H4 | 灯二段 | 57.02 | 91.50 | 0.04 | 0.00 | 0.057 | 5.47 | 2.04 | 0.46 |
PT1 | 灯二段 | — | 92.76 | 0.08 | 0.00 | 0.016 | 2.96 | 1.96 | 1.90 |
PT101 | 灯二段 | — | 93.86 | 0.08 | 0.00 | 0.016 | 2.35 | 1.51 | 2.06 |
PT102 | 灯二段 | — | 93.43 | 0.07 | 0.00 | 0.017 | 3.01 | 1.07 | 2.37 |
GS123 | 灯二段 | — | 88.56 | 0.03 | 0.00 | 0.089 | 5.36 | 4.20 | 1.67 |
MX124 | 灯二段 | — | 93.07 | 0.05 | 0.00 | 0.019 | 5.36 | 1.23 | 0.26 |
MX008-H22 | 龙王庙 | 75.90 | 96.27 | 0.14 | 0.00 | 0.012 | 1.74 | 1.53 | 0.30 |
MX008-H30 | 龙王庙 | 75.90 | 96.80 | 0.15 | 0.00 | 0.012 | 1.84 | 0.88 | 0.29 |
MX009-3-X1 | 龙王庙 | 75.90 | 96.78 | 0.15 | 0.00 | 0.013 | 1.87 | 0.79 | 0.39 |
MX009-3-X2 | 龙王庙 | 75.90 | 95.78 | 0.14 | 0.00 | 0.012 | 1.94 | 1.64 | 0.47 |
MX009-3-X3 | 龙王庙 | 75.90 | 92.87 | 0.14 | 0.01 | 0.014 | 3.30 | 3.21 | 0.42 |
MX16-C1 | 龙王庙 | 76.72 | 97.48 | 0.16 | 0.00 | 0.013 | 1.27 | 0.79 | 0.27 |
MX23-C1 | 龙王庙 | 78.17 | 95.72 | 0.13 | 0.00 | 0.014 | 1.99 | 1.37 | 0.76 |
GS102 | 龙王庙 | 68.59 | 90.74 | 0.06 | 0.00 | 0.019 | 2.51 | 1.04 | 3.74 |
GS6 | 龙王庙 | 68.30 | 90.49 | 0.07 | 0.00 | 0.021 | 3.31 | 1.63 | 4.45 |
W112 | 寒武系 | — | 88.54 | 0.09 | 0.00 | 0.177 | 4.16 | 6.50 | 0.43 |
W36-1 | 寒武系 | — | 88.77 | 0.10 | 0.00 | 0.172 | 4.14 | 6.34 | 0.37 |
W42 | 寒武系 | — | 86.97 | 0.08 | 0.00 | 0.172 | 4.35 | 7.66 | 0.64 |
W71 | 寒武系 | — | 89.51 | 0.11 | 0.00 | 0.175 | 3.29 | 6.66 | 0.08 |
表1 安岳气田和威远气田主要气体含量与氮同位素值
Table 1 Main gas contents and nitrogen isotope values of Anyue and Weiyuan gas fields
井位 | 产层 | 产层压力/ MPa | 主要气体组分/% | ||||||
---|---|---|---|---|---|---|---|---|---|
CH4 | C2H6 | C3H8 | He | CO2 | N2 | H2S | |||
GS125 | 灯四段 | 57.09 | 90.39 | 0.04 | 0.01 | 0.026 | 6.45 | 2.32 | 0.22 |
GS018-2-H1 | 灯四段 | — | 92.08 | 0.05 | 0.00 | 0.023 | 6.41 | 1.07 | 0.03 |
GS018-4-H1 | 灯四段 | 56.57 | 91.57 | 0.05 | 0.00 | 0.025 | 6.59 | 1.39 | 0.09 |
GS103-C1 | 灯四段 | 38.82 | 92.87 | 0.05 | 0.01 | 0.020 | 5.53 | 1.13 | 0.32 |
GS001-H39 | 灯四段 | 56.70 | 93.16 | 0.06 | 0.01 | 0.017 | 5.32 | 0.75 | 0.58 |
GS001-X40 | 灯四段 | 55.50 | 91.49 | 0.04 | 0.00 | 0.017 | 6.22 | 1.08 | 0.66 |
GS3 | 灯四段 | 53.39 | 93.19 | 0.16 | 0.06 | 0.020 | 4.06 | 0.81 | 1.48 |
MX8 | 灯四段 | 56.77 | 95.90 | 0.32 | 0.10 | 0.013 | 2.04 | 0.73 | 0.34 |
MX019-H2 | 灯四段 | 56.99 | 92.35 | 0.07 | 0.02 | 0.022 | 4.96 | 0.84 | 1.20 |
MX022-H33 | 灯四段 | 56.44 | 93.21 | 0.04 | 0.00 | 0.020 | 5.01 | 1.62 | 0.08 |
MX118 | 灯四段 | 59.47 | 92.55 | 0.05 | 0.00 | 0.021 | 5.25 | 1.04 | 0.95 |
GS001-X41 | 灯四段 | 55.54 | 92.39 | 0.04 | 0.00 | 0.019 | 5.50 | 0.75 | 1.25 |
GS001-H26 | 灯四段 | 55.74 | 92.14 | 0.05 | 0.00 | 0.021 | 4.98 | 1.04 | 1.75 |
GS001-X22 | 灯四段 | 56.59 | 92.68 | 0.04 | 0.00 | 0.025 | 5.06 | 1.33 | 0.82 |
GS001-X25 | 灯四段 | 56.41 | 92.35 | 0.04 | 0.00 | 0.019 | 5.86 | 0.70 | 1.00 |
GS001-X29 | 灯四段 | — | 92.71 | 0.04 | 0.00 | 0.021 | 5.53 | 0.94 | 0.71 |
GS001-X3 | 灯四段 | 56.47 | 92.54 | 0.04 | 0.00 | 0.020 | 6.58 | 0.17 | 0.63 |
GS001-X35 | 灯四段 | 56.04 | 92.82 | 0.04 | 0.00 | 0.019 | 5.21 | 0.78 | 1.10 |
GS001-X36 | 灯四段 | 58.21 | 93.01 | 0.04 | 0.00 | 0.022 | 5.37 | 1.04 | 0.48 |
GS001-H15 | 灯四段 | — | 92.48 | 0.04 | 0.00 | 0.020 | 5.20 | 1.02 | 1.08 |
GS135 | 灯二段 | 52.95 | 93.03 | 0.14 | 0.04 | 0.021 | 4.98 | 0.77 | 0.86 |
GS131X | 灯二段 | 57.18 | 92.59 | 0.04 | 0.00 | 0.040 | 5.21 | 1.55 | 0.51 |
GS009-H1 | 灯二段 | 56.45 | 92.32 | 0.20 | 0.06 | 0.036 | 5.21 | 1.10 | 0.54 |
GS009-H2 | 灯二段 | 56.70 | 92.67 | 0.12 | 0.04 | 0.061 | 4.87 | 1.83 | 0.12 |
GS009-H3 | 灯二段 | 53.20 | 92.66 | 0.04 | 0.00 | 0.054 | 4.83 | 1.98 | 0.26 |
GS009-H4 | 灯二段 | 57.02 | 91.50 | 0.04 | 0.00 | 0.057 | 5.47 | 2.04 | 0.46 |
PT1 | 灯二段 | — | 92.76 | 0.08 | 0.00 | 0.016 | 2.96 | 1.96 | 1.90 |
PT101 | 灯二段 | — | 93.86 | 0.08 | 0.00 | 0.016 | 2.35 | 1.51 | 2.06 |
PT102 | 灯二段 | — | 93.43 | 0.07 | 0.00 | 0.017 | 3.01 | 1.07 | 2.37 |
GS123 | 灯二段 | — | 88.56 | 0.03 | 0.00 | 0.089 | 5.36 | 4.20 | 1.67 |
MX124 | 灯二段 | — | 93.07 | 0.05 | 0.00 | 0.019 | 5.36 | 1.23 | 0.26 |
MX008-H22 | 龙王庙 | 75.90 | 96.27 | 0.14 | 0.00 | 0.012 | 1.74 | 1.53 | 0.30 |
MX008-H30 | 龙王庙 | 75.90 | 96.80 | 0.15 | 0.00 | 0.012 | 1.84 | 0.88 | 0.29 |
MX009-3-X1 | 龙王庙 | 75.90 | 96.78 | 0.15 | 0.00 | 0.013 | 1.87 | 0.79 | 0.39 |
MX009-3-X2 | 龙王庙 | 75.90 | 95.78 | 0.14 | 0.00 | 0.012 | 1.94 | 1.64 | 0.47 |
MX009-3-X3 | 龙王庙 | 75.90 | 92.87 | 0.14 | 0.01 | 0.014 | 3.30 | 3.21 | 0.42 |
MX16-C1 | 龙王庙 | 76.72 | 97.48 | 0.16 | 0.00 | 0.013 | 1.27 | 0.79 | 0.27 |
MX23-C1 | 龙王庙 | 78.17 | 95.72 | 0.13 | 0.00 | 0.014 | 1.99 | 1.37 | 0.76 |
GS102 | 龙王庙 | 68.59 | 90.74 | 0.06 | 0.00 | 0.019 | 2.51 | 1.04 | 3.74 |
GS6 | 龙王庙 | 68.30 | 90.49 | 0.07 | 0.00 | 0.021 | 3.31 | 1.63 | 4.45 |
W112 | 寒武系 | — | 88.54 | 0.09 | 0.00 | 0.177 | 4.16 | 6.50 | 0.43 |
W36-1 | 寒武系 | — | 88.77 | 0.10 | 0.00 | 0.172 | 4.14 | 6.34 | 0.37 |
W42 | 寒武系 | — | 86.97 | 0.08 | 0.00 | 0.172 | 4.35 | 7.66 | 0.64 |
W71 | 寒武系 | — | 89.51 | 0.11 | 0.00 | 0.175 | 3.29 | 6.66 | 0.08 |
井位 | (3He/4He)/10-8 | 4He/20Ne | 40Ar/36Ar | 38Ar/36Ar | R/Ra | Vg/Vw(36Ar) | Vg/Vw(20Ne) |
---|---|---|---|---|---|---|---|
MX022-H33 | 5.69 | 6 538 | 748.30 | 0.19 | 0.041 | 7.00 | 4.93 |
MX118 | 3.73 | 11 976 | 785.90 | 0.18 | 0.027 | 6.42 | 8.57 |
GS001-X41 | 5.57 | 4 408 | 946.57 | 0.19 | 0.040 | 7.60 | 3.79 |
GS001-H26 | 6.44 | 10 088 | 761.80 | 0.18 | 0.046 | 6.13 | 7.09 |
GS001-X22 | 4.42 | 6 092 | 1 019.30 | 0.20 | 0.032 | 8.47 | 3.63 |
GS001-X25 | 4.70 | 9 166 | 768.30 | 0.19 | 0.034 | 7.55 | 7.09 |
GS001-X29 | 5.10 | 7 575 | 636.30 | 0.19 | 0.036 | 4.65 | 5.28 |
GS001-X3 | 6.24 | 11 882 | 684.80 | 0.18 | 0.045 | 5.90 | 9.09 |
GS001-X35 | 7.74 | 8 748 | 699.80 | 0.19 | 0.055 | 3.84 | 6.79 |
GS001-X36 | 3.45 | 7 622 | 663.40 | 0.18 | 0.025 | 5.29 | 5.29 |
GS001-H15 | 6.54 | 13 471 | 642.60 | 0.19 | 0.047 | 4.64 | 10.33 |
GS131X | 5.42 | 11 145 | 1 373.80 | 0.19 | 0.039 | 5.58 | 2.89 |
GS009-H1 | 2.82 | 13 937 | 1 807.20 | 0.19 | 0.020 | 11.00 | 4.70 |
GS009-H2 | 4.37 | 12 951 | 2 662.30 | 0.19 | 0.031 | 8.73 | 2.60 |
GS009-H3 | 4.50 | 9 207 | 996.30 | 0.20 | 0.032 | 3.60 | 1.72 |
GS009-H4 | 3.53 | 6 297 | 1 067.30 | 0.19 | 0.025 | 3.27 | 1.27 |
PT1 | 9.79 | 60 486 | 660.20 | 0.18 | 0.070 | 6.50 | 55.19 |
PT101 | 7.94 | 11 997 | 678.30 | 0.19 | 0.057 | 6.58 | 10.96 |
PT102 | 6.74 | 21 146 | 857.50 | 0.18 | 0.048 | 9.18 | 18.28 |
GS123 | 3.80 | 37 600 | 2 000.60 | 0.17 | 0.027 | 4.50 | 6.28 |
MX124 | 2.54 | 26 481 | 787.80 | 0.17 | 0.018 | 6.77 | 20.62 |
MX008-H22 | 2.40 | 3 580 | 521.50 | 0.19 | 0.017 | 5.12 | 4.28 |
MX008-H30 | 1.64 | 16 787 | 602.60 | 0.18 | 0.012 | 7.52 | 20.58 |
MX009-3-X1 | 1.39 | 5 908 | 462.80 | 0.19 | 0.010 | 3.82 | 6.81 |
MX009-3-X2 | 1.79 | 3 439 | 514.70 | 0.18 | 0.013 | 4.97 | 4.32 |
MX009-3-X3 | 1.73 | 16 428 | 690.20 | 0.18 | 0.012 | 8.62 | 18.14 |
MX16-C1 | 7.35 | 11 412 | 538.70 | 0.18 | 0.005 | 5.76 | 13.65 |
MX23-C1 | 1.24 | 17 030 | 954.30 | 0.18 | 0.009 | 13.58 | 18.16 |
GS102 | 2.01 | 11 753 | 613.90 | 0.19 | 0.014 | 4.29 | 9.10 |
GS6 | 2.50 | 8 433 | 778.20 | 0.18 | 0.018 | 6.28 | 6.07 |
W112 | 3.30 | 43 862 | 3 015.60 | 0.17 | 0.020 | 3.35 | 3.63 |
W36-1 | 2.74 | 32 420 | 2 532.00 | 0.17 | 0.022 | 2.35 | 2.53 |
W42 | 3.05 | 41 906 | 3 628.30 | 0.17 | 0.024 | 3.67 | 3.12 |
W71 | 3.01 | 15 121 | 2 013.20 | 0.18 | 0.022 | 4.68 | 1.23 |
表2 安岳气田和威远气田稀有气体同位素比值、R/Ra值和Vg/Vw值
Table 2 Noble gas isotope ratios, R/Ra values and Vg/Vw in Anyue and Weiyuan gas fields
井位 | (3He/4He)/10-8 | 4He/20Ne | 40Ar/36Ar | 38Ar/36Ar | R/Ra | Vg/Vw(36Ar) | Vg/Vw(20Ne) |
---|---|---|---|---|---|---|---|
MX022-H33 | 5.69 | 6 538 | 748.30 | 0.19 | 0.041 | 7.00 | 4.93 |
MX118 | 3.73 | 11 976 | 785.90 | 0.18 | 0.027 | 6.42 | 8.57 |
GS001-X41 | 5.57 | 4 408 | 946.57 | 0.19 | 0.040 | 7.60 | 3.79 |
GS001-H26 | 6.44 | 10 088 | 761.80 | 0.18 | 0.046 | 6.13 | 7.09 |
GS001-X22 | 4.42 | 6 092 | 1 019.30 | 0.20 | 0.032 | 8.47 | 3.63 |
GS001-X25 | 4.70 | 9 166 | 768.30 | 0.19 | 0.034 | 7.55 | 7.09 |
GS001-X29 | 5.10 | 7 575 | 636.30 | 0.19 | 0.036 | 4.65 | 5.28 |
GS001-X3 | 6.24 | 11 882 | 684.80 | 0.18 | 0.045 | 5.90 | 9.09 |
GS001-X35 | 7.74 | 8 748 | 699.80 | 0.19 | 0.055 | 3.84 | 6.79 |
GS001-X36 | 3.45 | 7 622 | 663.40 | 0.18 | 0.025 | 5.29 | 5.29 |
GS001-H15 | 6.54 | 13 471 | 642.60 | 0.19 | 0.047 | 4.64 | 10.33 |
GS131X | 5.42 | 11 145 | 1 373.80 | 0.19 | 0.039 | 5.58 | 2.89 |
GS009-H1 | 2.82 | 13 937 | 1 807.20 | 0.19 | 0.020 | 11.00 | 4.70 |
GS009-H2 | 4.37 | 12 951 | 2 662.30 | 0.19 | 0.031 | 8.73 | 2.60 |
GS009-H3 | 4.50 | 9 207 | 996.30 | 0.20 | 0.032 | 3.60 | 1.72 |
GS009-H4 | 3.53 | 6 297 | 1 067.30 | 0.19 | 0.025 | 3.27 | 1.27 |
PT1 | 9.79 | 60 486 | 660.20 | 0.18 | 0.070 | 6.50 | 55.19 |
PT101 | 7.94 | 11 997 | 678.30 | 0.19 | 0.057 | 6.58 | 10.96 |
PT102 | 6.74 | 21 146 | 857.50 | 0.18 | 0.048 | 9.18 | 18.28 |
GS123 | 3.80 | 37 600 | 2 000.60 | 0.17 | 0.027 | 4.50 | 6.28 |
MX124 | 2.54 | 26 481 | 787.80 | 0.17 | 0.018 | 6.77 | 20.62 |
MX008-H22 | 2.40 | 3 580 | 521.50 | 0.19 | 0.017 | 5.12 | 4.28 |
MX008-H30 | 1.64 | 16 787 | 602.60 | 0.18 | 0.012 | 7.52 | 20.58 |
MX009-3-X1 | 1.39 | 5 908 | 462.80 | 0.19 | 0.010 | 3.82 | 6.81 |
MX009-3-X2 | 1.79 | 3 439 | 514.70 | 0.18 | 0.013 | 4.97 | 4.32 |
MX009-3-X3 | 1.73 | 16 428 | 690.20 | 0.18 | 0.012 | 8.62 | 18.14 |
MX16-C1 | 7.35 | 11 412 | 538.70 | 0.18 | 0.005 | 5.76 | 13.65 |
MX23-C1 | 1.24 | 17 030 | 954.30 | 0.18 | 0.009 | 13.58 | 18.16 |
GS102 | 2.01 | 11 753 | 613.90 | 0.19 | 0.014 | 4.29 | 9.10 |
GS6 | 2.50 | 8 433 | 778.20 | 0.18 | 0.018 | 6.28 | 6.07 |
W112 | 3.30 | 43 862 | 3 015.60 | 0.17 | 0.020 | 3.35 | 3.63 |
W36-1 | 2.74 | 32 420 | 2 532.00 | 0.17 | 0.022 | 2.35 | 2.53 |
W42 | 3.05 | 41 906 | 3 628.30 | 0.17 | 0.024 | 3.67 | 3.12 |
W71 | 3.01 | 15 121 | 2 013.20 | 0.18 | 0.022 | 4.68 | 1.23 |
图6 Panhandle-Huguton气田(A)和安岳气田20Ne与4He关系图[含氦气井(B)、贫氦气井(C)]
Fig.6 Panhandle Huguton gas field (A) and Anyue gas field 20Ne and 4He relationship [helium-containing gas well (B), helium-poor gas well (C)]
[1] | 唐金荣, 张宇轩, 周俊林, 等. 全球氦气产业链分析与中国应对策略[J]. 地质通报, 2023, 42(1): 1-13. |
[2] | ANDERSON S T. Economics, helium and the U.S. Federal helium reserve: summary and outlook[J]. Nature Resources Research, 2018, 27(4): 455-477. |
[3] | USGS. Mineral commodity summaries 2022[R]. Reston: U.S. Geological Survey, 2022. |
[4] | 陶士振, 杨怡青, 陈悦, 等. 氦气资源地质形成条件、成因机理与富集规律[J]. 石油勘探与开发, 2024, 51(2): 436-452. |
[5] | WEINLICH F H, BRÄUER K, KÄMPF H, et al. An active subcontinental mantle volatile system in the western Eger rift, Central Europe: gas flux, isotopic (He, C, and N) and compositional fingerprints[J]. Geochimica et Cosmochimica Acta, 1999, 63(21): 3653-3671. |
[6] | LEE H, FISCHER T P, MUIRHEAD J D, et al. Incipient rifting accompanied by the release of subcontinental lithospheric mantle volatiles in the Magadi and Natron basin, East Africa[J]. Journal of Volcanology & Geothermal Research, 2017, 346: 118-133. |
[7] | MAMYRIN B A, TOLSTIKHIN I N. Helium Isotopes in Nature[M]//Developments in Geochemistry 3. Amsterdam:Elsevier, 1986. |
[8] | OXBURGH E R, O’NIONS R K, HILL R I. Helium isotopes in sedimentary basins[J]. Nature, 1986, 324(6098): 632-635. |
[9] | BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy & Geochemistry, 2002, 47(1): 481-538. |
[10] | BROWN A. Origin of helium and nitrogen in the Panhandle Hugoton Field of Texas, Oklahoma, and Kansas, United States[J]. AAPG Bulletin, 2019, 103(2): 369-403. |
[11] | RAPATSKAYA L A, TONKIKH M E, USTYUZHANIN A O. Natural reservoir as a geological body for storing helium reserves[C]// IOP Conference Series: Earth and Environment Science. Bristol: IOP Publishing, 2020, 408(1): 012060. |
[12] | 彭威龙, 刘全有, 张英, 等. 中国首个特大致密砂岩型(烃类)富氦气田: 鄂尔多斯盆地东胜气田特征[J]. 中国科学:地球科学, 2022, 52(6): 1078-1085. |
[13] | 张宝收, 张本健, 汪华, 等. 四川盆地金秋气田:一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
[14] | BROADHEAD R F. Helium in New Mexico-Geologic distribution, resource demand, and exploration possibilities[J]. New Mexico Geology, 2005, 27(4): 93-101. |
[15] | QIN S F, YUAN M, ZHOU Z, et al. Distribution law of helium in Leshan-Longnvsi paleo-uplift in Sichuan Basin, China[C]// IOP Conference Series: Earth and Environmental Science. Bristol: IOP Publishing, 2019, 360: 012031. |
[16] | 何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3): 589-606. |
[17] | 魏国齐. 四川盆地构造特征与油气[M]. 北京: 科学出版社, 2019: 1283. |
[18] | 汪泽成, 王铜山, 文龙, 等. 四川盆地安岳特大型气田基本地质特征与形成条件[J]. 中国海上油气, 2016, 28(2): 45-52. |
[19] | CHEN Z, YANG Y, WANG T G, et al. Dibenzothiophenes in solid bitumens: use of molecular markers to trace paleo-oil filling orientations in the Lower Cambrian reservoir of the Moxi-Gaoshiti Bulge, Sichuan Basin, southern China[J]. Organic Geochemistry, 2017, 108: 94-112. |
[20] | 魏国齐, 谢增业, 宋家荣, 等. 四川盆地川中古隆起震旦系—寒武系天然气特征及成因[J]. 石油勘探与开发, 2015, 42(6): 702-711. |
[21] | YUAN H F, LIANG J J, GONG D Y, et al. Formation and evolution of Sinian oil and gas pools in typical structures, Sichuan Basin, China[J]. Petroleum Science, 2012, 9(2): 129-140. |
[22] | CAO C H, ZHANG M, TANG Q, et al. Noble gas isotopic variations and geological implication of Longmaxi shale gas in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 89(10): 38-46. |
[23] | 刘强, 鲁雪松, 范俊佳, 等. 四川盆地震旦系气藏TSR证据及控制因素[J]. 天然气地球科学, 2022, 33(6): 929-943. |
[24] | 帅燕华, 张水昌, 胡国艺, 等. 四川盆地高石梯-磨溪地区震旦系—寒武系天然气TSR效应及气源启示[J]. 地质学报, 2019, 93(7): 1754-1766. |
[25] | SANO Y, WAKITA H, SHENG X. Atmospheric helium isotope ratio[J]. Geochemical Journal, 2008, 22(4): 177. |
[26] | CLARKE W B, JENKINS W J, TOP Z. Determination of tritium by mass spectrometric measurement of 3He[J]. International Journal of Applied Radiation & Isotopes, 1976, 27(9): 515-522. |
[27] | 张文. 关中和柴北缘地区战略性氦气资源成藏机理研究[D]. 北京: 中国矿业大学(北京), 2019. |
[28] | BALLENTINE C J, LOLLAR B S. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field,USA[J]. Geochimica et Cosmochimica Acta, 2002, 66(14): 2483-2497. |
[29] | ZHANG W, LI Y H, ZHAO F H, et al. Using noble gases to trace groundwater evolution and assess helium accumulation in Weihe Basin, central China[J]. Geochimica et Cosmochimica Acta, 2019, 251: 229-246. |
[30] | ZHANG W, LI Y H, ZHAO F H, et al. Quantifying the helium and hydrocarbon accumulation processes using noble gases in the North Qaidam Basin, China[J]. Chemical Geology, 2019, 525: 368-379. |
[31] | LEE J Y, MARTI K, SEVERINGHAUS J P, et al. A redetermination of the isotopic abundances of atmospheric Ar[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4507-4512. |
[32] | 李玉宏, 张文, 王利, 等. 壳源氦气成藏问题及成藏模式[J]. 西安科技大学学报, 2017, 37(4): 565-572. |
[33] | DANABALAN D. Helium: exploration methodology for a strategic resource[D]. Durham: Durham University, 2017. |
[34] | BROWN A. Formation of high Helium gases: a guide for explorationists[C]// AAPG Convention. New Orleans: AAPG, 2010: 1-14. |
[35] | WANG X F, LIU W H, LI X F, et al. Radiogenic helium concentration and isotope variations in crustal gas pools from Sichuan Basin, China[J]. Applied Geochemistry, 2020, 117: 104586. |
[36] | 张晓宝, 周飞, 曹占元, 等. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景[J]. 天然气地球科学, 2020, 31(11): 1585-1592. |
[37] | CHENG A R, LOLLAR B S, GLUYAS, J G, et al. Primary N2-He gas field formation in intracratonic sedimentary basins[J]. Nature, 2023, 615(7950): 94-99. |
[38] | BARNARD P C, COOPER B S. A review of geochemical data related to the northwest European gas province[J]. Geological Society, London, Special Publications, 1983, 12(1): 19-33. |
[39] | GERLING P, GELUK M C, KOCKEL F, et al. ‘NW European Gas Atlas’: new implications for the Carboniferous gas plays in the western part of the Southern Permian Basin[C]// Petroleum geology of north-west Europe:proceedings of the 5th conference. Bath: The Geological Society of London, 1999, 5(1): 799-808. |
[40] | ZHU Y N, SHI B Q, FANG C B. The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations[J]. Chemical Geology, 2000, 164(3-4): 321-330. |
[41] | 刘全有, 刘文汇, KROOSS B M, 等. 天然气中氮的地球化学研究进展[J]. 天然气地球科学, 2006, 17(1): 119-124. |
[42] | CARTIGNY P, MARTY B. Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection[J]. Elements, 2013, 9(5): 359-366. |
[43] | HALFORD D T, KAROLYTE R, BARRY P H, et al. High helium reservoirs in the four corners area of the Colorado Plateau, USA[J]. Chemical Geology, 2022, 596: 120790. |
[44] | 汪泽成, 赵文智, 李宗银, 等. 基底断裂在四川盆地须家河组天然气成藏中的作用[J]. 石油勘探与开发, 2008, 35(5): 541-547. |
[45] | 李玉宏, 张文, 王利, 等. 亨利定律与壳源氦气弱源成藏: 以渭河盆地为例[J]. 天然气地球科学, 2017, 28(4): 495-501. |
[46] | 秦胜飞, 李济远, 梁传国, 等. 中国中西部富氦气藏氦气富集机理: 古老地层水脱氦富集[J]. 天然气地球科学, 2022, 33(8): 1203-1217. |
[47] | BARRY P H, LAWSON M, MEURER W P, et al. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field[J]. Geochimica et Cosmochimica Acta, 2016, 194: 291-309. |
[48] | ZAIKOWSKI A, SPANGLER R R. Noble gas and methane partitioning from ground water: an aid to natural gas exploration and reservoir evaluation[J]. Geology, 1990, 18(1): 72-74. |
[49] | BALLENTINE C J, BURGESS R, MARTY B. Tracing fluid origin, transport and interaction in the crust[J]. Reviews in Mineralogy & Geochemistry, 2002, 47(1): 539-614. |
[50] | PRINZHOFER A. Noble gases in oil and gas accumulations[M]//BURNARD P. The noble gases as geochemical tracers. Berlin, Heidelberg: Springer, 2013: 235-257. |
[51] | BARRY P H, LAWSON M, MEURER W P, et al. Determining fluid migration and isolation times in multiphase crustal domains using noble gases[J]. Geology, 2017, 45(9): 755-778. |
[52] | BYRNE D J, BARRY P H, LAWSON M, et al. The use of noble gas isotopes to constrain subsurface fluid flow and hydrocarbon migration in the East Texas Basin[J]. Geochimica et Cosmochimica Acta, 2020, 268: 186-208. |
[53] | SMITH S P, KENNEDY B M. The solubility of noble gases in water and in NaCl brine[J]. Geochimica et Cosmochimica Acta. 1983, 47(3): 503-515. |
[54] | PODOSEK F A, BERNATOWICZ T J, KRAMER F E. Adsorption of xenon and krypton on shales[J]. Geochimica et Cosmochimica Acta, 1981, 45(12): 2401-2415. |
[55] | MTILI K M, BYRNE D J, TYNE R L, et al. The origin of high helium concentrations in the gas fields of southwestern Tanzania[J]. Chemical Geology, 2021, 585: 120542. DOI: 10.1016/j.chemgeo.2021.120542. |
[56] | DANABALAN D, GLUYAS J G, MACPHERSON C G, et al. The principles of helium exploration[J]. Petroleum Geoscience, 2022, 28(2): petgeo 2021-029. |
[57] | 梁霄, 刘树根, 夏铭, 等. 四川盆地威远构造震旦系灯影组气烟囱特征及其地质意义[J]. 石油与天然气地质, 2016, 37(5): 702-712. |
[58] | 陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现:和田河气田[J]. 地球科学, 2019, 44(3): 1024-1041. |
[59] | 宋鸿彪, 罗志立. 盆地实例分析:四川盆地基底及深部地质结构研究的进展[J]. 地学前缘, 1995, 2(4): 231-237. |
[60] | 周稳生. 四川盆地重磁异常特征与深部结构[D]. 南京: 南京大学, 2016. |
[1] | 徐朱松, 李剑, 王晓波, 崔会英, 田继先, 国建英, 李婉婷, 夏雨田, 陶士振, 陈大伟. 柴达木盆地氦气富集规律与有利区预测[J]. 地学前缘, 2025, 32(5): 290-307. |
[2] | 刘祥柏, 陶士振, 杨岱林, 谢武仁, 赵容容, 田兴旺, 王云龙, 高建荣, 柳庄小雪, 李超正, 宋泽章, 陈燕燕, 杨怡青, 陈悦. 四川盆地大探1井富氦天然气勘探突破及成藏主控因素[J]. 地学前缘, 2025, 32(5): 258-277. |
[3] | 陈燕燕, 温志新, 陶士振, 吴伟, 刘祥柏, 杨秀春, 高建荣, 刘庆尧, 李靖, 杨怡青, 陈悦. 页岩气和煤层气中氦气富集机理与资源潜力:以川南页岩气和鄂东缘煤层气为例[J]. 地学前缘, 2025, 32(5): 244-257. |
[4] | 杨怡青, 陶士振, 李剑, 杨威, 陈悦, 高建荣, 王晓波, 陈燕燕, 刘祥柏. 含氦气系统静态地质要素和动态作用过程[J]. 地学前缘, 2025, 32(5): 230-243. |
[5] | 陶士振, 吴义平, 陶小晚, 王晓波, 王青, 陈胜, 高建荣, 吴晓智, 刘申奥艺, 宋连腾, 陈荣, 李谦, 杨怡青, 陈悦, 陈秀艳, 陈燕燕, 齐雯. 氦气地质理论认识、资源勘查评价与全产业链一体化评价关键技术[J]. 地学前缘, 2024, 31(1): 351-367. |
[6] | 吴义平, 王青, 陶士振, 王建君, 李谦, 张宁宁, 吴晓智, 李浩武, 王晓波. 壳源氦气成藏主控因素及资源评价方法研究[J]. 地学前缘, 2024, 31(1): 340-350. |
[7] | 杨怡青, 陶士振, 陈悦. 美国典型富氦无机成因气田中氦气地质特征与聚集机制[J]. 地学前缘, 2024, 31(1): 327-339. |
[8] | 张满郎, 郭振华, 张林, 付晶, 郑国强, 谢武仁, 马石玉. 四川安岳气田龙王庙组颗粒滩岩溶储层发育特征及主控因素[J]. 地学前缘, 2021, 28(1): 235-248. |
[9] | 杨超, 张金川, 唐玄. 鄂尔多斯盆地陆相页岩微观孔隙类型及对页岩气储渗的影响[J]. 地学前缘, 2013, 20(4): 299-304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||