地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 119-128.DOI: 10.13745/j.esf.sf.2024.5.9

• 三维地质建模与成矿预测 • 上一篇    下一篇

三维成矿预测关键问题

袁峰1,2(), 李晓晖1,2, 田卫东3, 周官群1,2, 汪金菊4, 葛粲1,2, 国显正1,2, 郑超杰1,2   

  1. 1.合肥工业大学 资源与环境工程学院, 安徽 合肥 230009
    2.安徽省战略性矿产资源深部探测与评价利用重点实验室, 安徽 合肥 230009
    3.合肥工业大学 计算机与信息学院, 安徽 合肥 230009
    4.合肥工业大学 数学学院, 安徽 合肥 230009
  • 收稿日期:2023-08-28 修回日期:2024-02-08 出版日期:2024-07-25 发布日期:2024-07-10
  • 作者简介:袁 峰(1971—),男,博士,教授,博士生导师,主要从事成矿规律与成矿预测工作。E-mail: yf_hfut@163.com
  • 基金资助:
    国家自然科学基金项目(42230802)

Key issues in three-dimensional predictive modeling of mineral prospectivity

YUAN Feng1,2(), LI Xiaohui1,2, TIAN Weidong3, ZHOU Guanqun1,2, WANG Jinju4, GE Can1,2, GUO Xianzheng1,2, ZHENG Chaojie1,2   

  1. 1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
    2. Anhui Provincial Key Laboratory for Deep Exploration, Evaluation and Utilization of Strategic Mineral Resources, Hefei 230009, China
    3. School of Computer Science and Information Engine, Hefei University of Technology, Hefei 230009, China
    4. School of Mathematics, Hefei University of Technology, Hefei 230009, China
  • Received:2023-08-28 Revised:2024-02-08 Online:2024-07-25 Published:2024-07-10

摘要:

三维成矿预测是当前深部找矿预测和勘查的重要方法和手段,其方法体系和实践应用均已取得大量成果,但同时存在若干关键科学技术问题,导致其进一步发展受到制约。本文从多尺度三维成矿预测方法体系不完善、不确定性分析与优化研究薄弱、三维成矿预测要素挖掘存在瓶颈、缺少针对三维成矿预测的三维深度学习模型和方法等关键问题出发,对目前三维成矿预测领域相关方面的研究进展进行综合分析,并提出针对上述关键问题可能的解决方案和研究方向。预期未来三维成矿预测领域的研究工作将创新发展出多种方法,实现对三维预测信息的深度挖掘;构建形成适用的三维深度学习模型和训练方法,有效增强三维成矿预测结果的预测能力;通过系统性地开展三维成矿预测不确定性研究,进一步优化预测过程和结果,有效提高三维成矿预测方法的可靠性和准确性;形成面向多尺度三维成矿预测的方法体系,更有效地指导矿集区-矿田-勘查区块(矿床)等不同级别的深部矿产资源找矿勘查工作。相关关键问题的解决将进一步深化和完善三维成矿预测理论和方法体系,促进三维成矿预测理论方法的实践应用,显著提升深部找矿预测和勘查工作的效率与水平,助力深部找矿突破。

关键词: 三维成矿预测, 关键问题, 多尺度, 预测信息发掘, 不确定性, 数据融合

Abstract:

Three-dimensional predictive modeling of mineral prospectivity is an important approach to deep mineral exploration. Although significant advancements have been made in the methodology and application of this approach, several key scientific and technological issues remain unresolved concerning the insufficiencies of multi-scale 3D predictive modeling methodology, uncertainty analysis and optimization of prediction results, mining of key factors in 3D mineralization prediction, and dedicated 3D deep learning models and methodologies tailored for 3D predictive modeling of mineral prospectivity. Focusing on these key issues, this paper conducts a comprehensive review of current research progress in the field, and proposes potential solutions and research directions to address these issues. Future developments in this field include methods for deep mining of 3D predictive information; applicable 3D deep learning models and training methods for enhanced predictive modeling; uncertainty analysis and optimization methods for improving the reliability and accuracy of 3D mineralization prediction; and a methodological framework for multi-scale predictive modeling so as to effectively guide deep mineral exploration at the levels of orebodies, ore fields, and ore deposits. Resolving these key issues will further develop and refine the theoretical and methodological frameworks of 3D mineralization prediction, significantly improve the efficiency of deep mineral exploration, and ultimately facilitate breakthrough in mineral deposit discovery in the deep earth.

Key words: 3D mineral prospectivity prediction, key issues, multi-scale, predictive information discovery, uncertainty, data fusion

中图分类号: