地学前缘 ›› 2024, Vol. 31 ›› Issue (2): 447-471.DOI: 10.13745/j.esf.sf.2022.10.44
李茜(), 朱光有*(
), 李婷婷, 陈志勇, 艾依飞, 张岩, 田连杰
收稿日期:
2022-07-30
修回日期:
2022-11-05
出版日期:
2024-03-25
发布日期:
2024-04-18
通信作者:
*朱光有(1973—),男,教授级高级工程师,主要从事深层油气地质与成藏研究工作。E-mail: 作者简介:
李 茜(1996—),男,博士研究生,矿产普查与勘探专业。E-mail: geolixi@126.com
基金资助:
LI Xi(), ZHU Guangyou*(
), LI Tingting, CHEN Zhiyong, AI Yifei, ZHANG Yan, TIAN Lianjie
Received:
2022-07-30
Revised:
2022-11-05
Online:
2024-03-25
Published:
2024-04-18
摘要:
近年来,研究铀(U)及其同位素有关的地球化学指标在地球环境科学领域发挥着越来越重要的作用。为加快我国U同位素发展和应用,本文系统回顾了近20年来U及其同位素的地球化学行为、U同位素分析测试技术、U循环与地表U同位素组成、U同位素分馏机理以及U同位素在环境科学领域的应用进展与技术壁垒。综述表明:U作为氧化还原敏感元素,在自然和人为活动中,U同位素存在显著分馏现象。U同位素已初步成功应用于示踪现代陆地表生环境系统中U的分布、迁移和扩散行为,重建地质历史时期环境与生命协同演化过程等地球环境科学领域。但总体而言,国内外U同位素研究工作仍处于起步阶段,多数局限于定性分析,在应用中也存在一些问题亟待解决,例如:特殊价态的U同位素仍无法测量,这制约了进一步对氧化还原过程中U同位素分馏机理的认识;地下水U污染处理手段缺失,表生沉积物的U同位素测试数据缺乏系统性和区域性,大气定量源计算解析模型还未完全建立;碳酸盐岩成岩过程中的U同位分馏机理尚不清楚,其分馏校正因子难以确定;黑色页岩包含海水和沉积物混杂的化学信号,难以准确扣除局部无效分馏信号;对非重大地质事件时期的关注较少导致无法恢复地球完整的氧化还原历史;U同位素高温地球化学分馏机理与应用基本处于空白等。未来,进一步改善U同位素测试技术,提高仪器检测分析精度,进行更系统的U同位素测试,建立各类型U同位素数据库,深化U同位素分馏机理认识,筑牢U同位素应用基石,尝试U同位素在更多领域的探索,以及将U同位素与其他氧化还原系统相关的示踪剂联合使用以提高示踪的准确性和可靠性,是U同位素研究的主要方向。本文对进一步推动我国U同位素在环境地球科学领域中的应用具有深远意义。
中图分类号:
李茜, 朱光有, 李婷婷, 陈志勇, 艾依飞, 张岩, 田连杰. U同位素分馏行为及其在环境地球科学中的应用研究进展[J]. 地学前缘, 2024, 31(2): 447-471.
LI Xi, ZHU Guangyou, LI Tingting, CHEN Zhiyong, AI Yifei, ZHANG Yan, TIAN Lianjie. Uranium isotope fractionation and application of uranium isotopes in environmental geosciences—a review[J]. Earth Science Frontiers, 2024, 31(2): 447-471.
同位素 | 半衰期/Ma | 放射性比/ (Bq·g-1) | 丰度比例/% |
---|---|---|---|
234U | 0.248 | 2.31×108 | 0.005 4 |
235U | 703.8 | 8.00×104 | 0.720 |
238U | 4 468 | 1.24×104 | 99.275 |
表1 天然U同位素相关信息
Table 1 Natural U isotope information
同位素 | 半衰期/Ma | 放射性比/ (Bq·g-1) | 丰度比例/% |
---|---|---|---|
234U | 0.248 | 2.31×108 | 0.005 4 |
235U | 703.8 | 8.00×104 | 0.720 |
238U | 4 468 | 1.24×104 | 99.275 |
步骤 | 加酸介质 | 体积 | 目的 |
---|---|---|---|
清洗柱 | 0.05 mol/L HCl | 20 mL | 清洗柱 |
平衡柱 | 3 mol/L HNO3 | 6 mL | |
上样 | 3 mol/L HNO3 | 10 mL | |
淋洗 | 3 mol/L HNO3 | 40 mL | 仅保留Th、U和Np |
盐酸介质 | 1 mol/L HCl | 6 mL | |
接Th,Np | 5 mol/L HCl+ 0.1 mol/L Oxalic | 20 mL | 洗掉Th、Np |
去草酸 | 5 mol/L HCl | 10 mL | |
接U | 0.05 mol/L HCl | 25 mL | 回收U |
表2 利用U-TEVA树脂分离U步骤(据文献[16]修改)
Table 2 Separating U steps with U-TEVA resin. Modified after [16].
步骤 | 加酸介质 | 体积 | 目的 |
---|---|---|---|
清洗柱 | 0.05 mol/L HCl | 20 mL | 清洗柱 |
平衡柱 | 3 mol/L HNO3 | 6 mL | |
上样 | 3 mol/L HNO3 | 10 mL | |
淋洗 | 3 mol/L HNO3 | 40 mL | 仅保留Th、U和Np |
盐酸介质 | 1 mol/L HCl | 6 mL | |
接Th,Np | 5 mol/L HCl+ 0.1 mol/L Oxalic | 20 mL | 洗掉Th、Np |
去草酸 | 5 mol/L HCl | 10 mL | |
接U | 0.05 mol/L HCl | 25 mL | 回收U |
图3 地质历史时期的全球U同位素循环的示意图(图据文献[15] 修改) a—24 亿年前全球U循环;b—24亿年~6亿年前的全球U循环;c—6亿年前至现今的全球U循环。 AOC代表蚀变洋壳; MORB代表洋中脊玄武岩; OIB代表洋岛玄武岩; Arc代表大洋岛弧。
Fig.3 Schematic diagram of the global U isotope cycle during geological history. Modified after [15].
图4 现代海洋U循环及同位素组成(据文献[16]修订) U同位素平衡关系为δ238U河流=δ238U强还原×f强还原+δ238U弱还原×f弱还原+δ238U原生碳酸盐岩×f原生碳酸盐岩+δ238U铁锰结壳×f铁锰结壳+δ238U蚀变洋壳×f蚀变洋壳,f为各个储库所占比例。
Fig.4 Modern marine U cycle and isotopic composition. Modified after [16].
U同位素分馏 | 分馏机理 | 研究实例代表 | |
---|---|---|---|
氧化还原过程中 U同位素分馏 | 微生物还原 | 生物还原过程富集重同位素238U | Rademacher等[ |
非生物还原 | 无机非生物还原过程比较复杂,可富集重的238U,也可富集轻的235U,也可以不分馏 | Stirling等[ | |
吸附过程中U同位素分馏 | 吸附过程导致吸附剂富集轻同位素235U,同位素平衡分馏值约为-0.20‰;实验测定的同位素分馏与自然样品一致 | Weyer等[ | |
碳酸盐岩沉淀及 成岩过程中U 同位素分馏 | 碳酸盐岩共沉淀及生物作用的U同位素分馏 | 碳酸钙共沉淀过程存在U同位素分馏,δ238U取决于溶解态U的中性组分含量,中性组分含量越高,则分馏系数越大;生物效应影响碳酸钙中U的分馏,U同位素分馏大小取决于钙化区的开放程度 | Chen等[ |
碳酸盐岩成岩过程中U同位素分馏 | 碳酸盐岩成岩作用导致分馏,但沉积后的成岩作用未导致进一步分馏;准同生白云石化不会导致进一步U同位素分馏 | Romaniello等[ |
表3 U同位素分馏机理
Table 3 U isotope fractionation mechanism
U同位素分馏 | 分馏机理 | 研究实例代表 | |
---|---|---|---|
氧化还原过程中 U同位素分馏 | 微生物还原 | 生物还原过程富集重同位素238U | Rademacher等[ |
非生物还原 | 无机非生物还原过程比较复杂,可富集重的238U,也可富集轻的235U,也可以不分馏 | Stirling等[ | |
吸附过程中U同位素分馏 | 吸附过程导致吸附剂富集轻同位素235U,同位素平衡分馏值约为-0.20‰;实验测定的同位素分馏与自然样品一致 | Weyer等[ | |
碳酸盐岩沉淀及 成岩过程中U 同位素分馏 | 碳酸盐岩共沉淀及生物作用的U同位素分馏 | 碳酸钙共沉淀过程存在U同位素分馏,δ238U取决于溶解态U的中性组分含量,中性组分含量越高,则分馏系数越大;生物效应影响碳酸钙中U的分馏,U同位素分馏大小取决于钙化区的开放程度 | Chen等[ |
碳酸盐岩成岩过程中U同位素分馏 | 碳酸盐岩成岩作用导致分馏,但沉积后的成岩作用未导致进一步分馏;准同生白云石化不会导致进一步U同位素分馏 | Romaniello等[ |
图5 微生物还原U同位素实验(数据引自文献[13,76⇓⇓-79]) a—微生物的参与能够使有机质降解为CO2,同时将U6+还原为U4+;b—前人利用微生物生物还原U6+,所测还原沉积物中δ238U值。
Fig.5 Microbial reduction of U isotope experiments. Data from [13,76⇓⇓-79].
图7 吸附过程U同位素分馏(数据来源于文献[14,61,82⇓-84,97]) a—吸附过程中U同位素分馏;b—自然海洋中铁锰结核的U同位素分馏。
Fig.7 U Isotope fractionation in adsorption process. Data from [14,61,82⇓-84,97].
图10 巴哈马地区的碳酸盐岩δ238U值对比(据文献[85]修改) a—表生碳酸盐岩; b—同沉积碳酸盐岩; c—沉积后碳酸盐岩。
Fig.10 Comparison of δ238U values of carbonate rocks in the Bahamas. Modified after [85].
U同位素的地质应用 | 应用结果 | 后续研究方向 | 典型案例来源 | |
---|---|---|---|---|
示踪陆地表生环境中U的分布、迁移和扩散 | 示踪地 下水 | 地下水还原导致δ238U比值降低;氧化导致地下水δ238U比值升高;吸附与解析过程δ238U比值不变 | 后续还需要更加可靠且持久的地下水U污染处理手段 | 李高军等[ |
示踪 沉积物 | U同位素是示踪沉积物中U污染源和驱动力的有力工具 | 未来可以开展更为系统的、区域范围更大的表生沉积物的U同位素测试与研究 | 黄钊等[ | |
示踪大气 | U同位素示踪大气污染技术具有灵敏度高、准确性好、定性识别污染来源和定量计算污染程度的优势 | 定量源计算解析模型有待进一步建立和完善 | 欧阳洁等[ | |
重建地质历史时期中环境与生命协同演化过程 | 碳酸 盐岩 | 海相碳酸盐岩的U同位素已成为定性确定古海洋氧化状态的重要工具,并可作为定量示踪全球氧化还原状态转化时间、持续时间和程度的指标 | 需要考虑成岩等作用影响因素,成岩作用分馏效应矫正需进一步研究 | Lau等[ 等[ Rooney等[ |
黑色页岩 | 黑色页岩的U同位素极好地保存了原始U同位素信号 | 利用黑色页岩U同位素时需要准确扣除局部分馏信号;U同位素可以与其他氧化还原系统相关的示踪剂联合使用,从而提高准确性和可靠性 | 李聪颖等[ Wang等[ |
表4 U同位素在地球环境科学领域中的应用
Table 4 Application of U isotopes in the field of earth environmental science
U同位素的地质应用 | 应用结果 | 后续研究方向 | 典型案例来源 | |
---|---|---|---|---|
示踪陆地表生环境中U的分布、迁移和扩散 | 示踪地 下水 | 地下水还原导致δ238U比值降低;氧化导致地下水δ238U比值升高;吸附与解析过程δ238U比值不变 | 后续还需要更加可靠且持久的地下水U污染处理手段 | 李高军等[ |
示踪 沉积物 | U同位素是示踪沉积物中U污染源和驱动力的有力工具 | 未来可以开展更为系统的、区域范围更大的表生沉积物的U同位素测试与研究 | 黄钊等[ | |
示踪大气 | U同位素示踪大气污染技术具有灵敏度高、准确性好、定性识别污染来源和定量计算污染程度的优势 | 定量源计算解析模型有待进一步建立和完善 | 欧阳洁等[ | |
重建地质历史时期中环境与生命协同演化过程 | 碳酸 盐岩 | 海相碳酸盐岩的U同位素已成为定性确定古海洋氧化状态的重要工具,并可作为定量示踪全球氧化还原状态转化时间、持续时间和程度的指标 | 需要考虑成岩等作用影响因素,成岩作用分馏效应矫正需进一步研究 | Lau等[ 等[ Rooney等[ |
黑色页岩 | 黑色页岩的U同位素极好地保存了原始U同位素信号 | 利用黑色页岩U同位素时需要准确扣除局部分馏信号;U同位素可以与其他氧化还原系统相关的示踪剂联合使用,从而提高准确性和可靠性 | 李聪颖等[ Wang等[ |
图11 U同位素示踪地下水U迁移和转化方式示意图(据文献[105⇓⇓-108]修改)
Fig.11 Diagram of U isotope tracing groundwater U migration and transformation. Modified after [105⇓⇓-108].
图14 碳酸盐岩、黑色页岩和铁锰结核指示地质历史时期中氧化还原状态原理模型 a—碳酸盐岩指示地质历史时期中氧化还原状态原理模型;b—黑色页岩指示地质历史时期中氧化还原状态原理模型;c—铁锰结核指示地质历史时期中氧化还原状态原理模型。
Fig.14 Principle model of carbonate rocks, black shale and ferromanganese nodules indicating redox state in geological history
图15 碳酸盐岩δ238U和δ13C垂向变化趋势示踪北美早密西西比期氧化还原事件(据文献[118]修改)
Fig.15 Vertical variation trend of δ238U and δ13C of carbonate rocks to trace redox events of Early Mississippi in North America. Modified after [118].
图16 南非Kaapvaal克拉通盆地陆缘海U地球化学循环(据文献[125]修改)
Fig.16 U geochemical cycle of continental margin sea in Kaapvaal craton basin, South Africa. Modified after [125].
[1] | SKWARZEC B, BORYŁO A, STRUMIŃSKA D. And isotopes in water and sediments of the southern Baltic[J]. Journal of Environmental Radioactivity, 2002, 61(3): 345-363. |
[2] | 徐林刚. 238U/235U分馏及其地质应用[J]. 矿床地质, 2014, 33(3): 497-510. |
[3] | 黄钊, 侯小琳, 赵雪, 等. 我国东北地区土壤铀同位素水平、 分布和来源[J]. 中国环境科学, 2021, 41(5): 2343-2351. |
[4] | WANG J J, HE B H, WEI X Y, et al. Sorption of uranyl ions on TiO2: effects of pH, contact time, ionic strength, temperature and HA[J]. Journal of Environmental Sciences, 2019, 75: 115-123. |
[5] | PLANAVSKY N J, REINHARD C T, WANG X L, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209): 635-638. |
[6] | LAU K V, MACDONALD F A, MAHER K, et al. Uranium isotope evidence for temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth[J]. Earth and Planetary Science Letters, 2017, 458: 282-292. |
[7] | BELLEFROID E J, HOOD A V S, HOFFMAN P F, et al. Constraints on Paleoproterozoic atmospheric oxygen levels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(32): 8104-8109. |
[8] | FARQUHAR J, BAO H, THIEMENS M. Atmosphericinfluence of Earth’s earliest sulfur cycle[J]. Science, 2000, 289(5480): 756-759. |
[9] | LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315. |
[10] | GUILBAUD R, POULTON S W, THOMPSON J, et al. Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen[J]. Nature Geoscience, 2020, 13(4): 296-301. |
[11] | CUMBERLAND S A, DOUGLAS G, GRICE K, et al. Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes[J]. Earth-Science Reviews, 2016, 159: 160-185. |
[12] | RICHTER S, ALONSO-MUNOZ A, EYKENS R, et al. The isotopic composition of natural uranium samples: measurements using the new n(233U)/n(236U) double spike IRMM-3636[J]. International Journal of Mass Spectrometry, 2008, 269(1/2): 145-148. |
[13] | STIRLING C H, ANDERSEN M B, POTTER E K, et al. Low-temperature isotopic fractionation of uranium[J]. Earth and Planetary Science Letters, 2007, 264(1/2): 208-225. |
[14] | WEYER S, ANBAR A D, GERDES A, et al. Natural fractionation of 238U/235U[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 345-359. |
[15] | ANDERSEN M B, ELLIOTT T, FREYMUTH H, et al. The terrestrial uranium isotope cycle[J]. Nature, 2015, 517(7534): 356-359. |
[16] | TISSOT F L H, DAUPHAS N. Uranium isotopic compositions of the crust and ocean: age corrections, U budget and global extent of modern anoxia[J]. Geochimica et Cosmochimica Acta, 2015, 167: 113-143. |
[17] | CHENG M, LI C, JIN C S, et al. Evidence for high organic carbon export to the early Cambrian seafloor[J]. Geochimica et Cosmochimica Acta, 2020, 287: 125-140. |
[18] | 梁正伟, 田世洪. 铀 “稳定” 同位素分馏及其在地球科学中的应用[J]. 地球科学, 2021, 46(12): 1-37. |
[19] | WEI G Y, PLANAVSKY N J, HE T C, et al. Global marine redox evolution from the late Neoproterozoic to the Early Paleozoic constrained by the integration of Mo and U isotope records[J]. Earth-Science Reviews, 2021, 214: 103506. |
[20] | 李高军, 李来峰, 李乐, 等. 河流铀同位素的控制机理及其对风化限制理论的启示意义[J]. 矿物岩石地球化学通报, 2019, 38(1): 11-17, 203. |
[21] | 王振飞, 黄康俊, 路雅雯, 等. 金属稳定同位素示踪地球增氧事件[J]. 地球科学, 2021, 46(12): 4427-4451. |
[22] | 金曼谷, 焦亚诺, 刘玥, 等. MC-ICP-MS铀同位素的高精度法拉第杯静态分析[J]. 科学通报, 2022, 67(22): 2651-2661. |
[23] | DJOGIĆ R, SIPOS L, BRANICA M. Characterization of uranium(VI) in seawater1[J]. Limnology and Oceanography, 1986, 31(5): 1122-1131. |
[24] | DONG W M, BROOKS S C. Formation of aqueous $MgUO_{2}(CO_{3})^{2-}_{3}$ complex and uranium anion exchange mechanism onto an exchange resin[J]. Environmental Science and Technology, 2008, 42(6): 1979-1983. |
[25] | ENDRIZZI F, RAO L F. Chemical speciation of uranium(VI) in marine environments: complexation of calcium and magnesium ions with[(UO2)(CO3)3]4- and the effect on the extraction of uranium from seawater[J]. Chemistry, 2014, 20(44): 14499-14506. |
[26] | JAFFEY A H, FLYNN K F, GLENDENIN L E, et al. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4(5): 1889. |
[27] | 欧阳洁, 杨国胜, 马玲玲, 等. 大气污染物中人工放射性铯-钚-铀同位素示踪技术的发展与应用[J]. 化学进展, 2017, 29(12): 1446-1461. |
[28] | FLEISCHER R L, RAABE O G. Recoiling alpha-emitting nuclei. Mechanisms for uranium-series disequilibrium[J]. Geochimica et Cosmochimica Acta, 1978, 42(7): 973-978. |
[29] | POURCELOT L, MASSON O, RENAUD P, et al. Environmental consequences of uranium atmospheric releases from fuel cycle facility: II. The atmospheric deposition of uranium and thorium on plants[J]. Journal of Environmental Radioactivity, 2015, 141: 1-7. |
[30] | SONG H Y, SONG H J, ALGEO T J, et al. Uranium and carbon isotopes document global-ocean redox-productivity relationships linked to cooling during the Frasnian-Famennian mass extinction[J]. Geology, 2017, 45(10): 887-890. |
[31] | LEMONS B, KHAING H, WARD A, et al. A rapid method for the sequential separation of polonium, plutonium, americium and uranium in drinking water[J]. Applied Radiation and Isotopes, 2018, 136: 10-17. |
[32] | YOON Y Y, CHO S Y, LEE K Y, et al. Radiochemical determination of uranium and radium isotope in natural water using liquid scintillation counter[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296(1): 397-402. |
[33] | PARK J H, PARK S, SONG K. Determination of the concentration and isotope ratio of uranium in soil and water by thermal ionization mass spectrometry[J]. Mass Spectrometry Letters, 2014, 5(1): 12-15. |
[34] | JIA G G. Sequential separation and determination of uranium and thorium isotopes in soil samples with microthene-TOPO chromatographic column and alpha-spectrometry[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311(2): 1007-1017. |
[35] | WIESER M E, SCHWIETERS J B. The development of multiple collector mass spectrometry for isotope ratio measurements[J]. International Journal of Mass Spectrometry, 2004, 242(2): 97-115. |
[36] | ASTON F W. Constitution of thallium and uranium[J]. Nature, 1931, 128(3234): 725. |
[37] | CHEN J H, WASSERBURG G J. Isotopic determination of uranium in picomole and subpicomole quantities[J]. Analytical Chemistry (United States), 1981, 53(13): 2060-2067. |
[38] | ANDERSEN M B, STIRLING C H, POTTER E K, et al. Toward epsilon levels of measurement precision on 234U/238U by using MC-ICPMS[J]. International Journal of Mass Spectrometry, 2004, 237(2/3): 107-118. |
[39] | BRENNECKA G A, BORG L E, HUTCHEON I D, et al. Natural variations in uranium isotope ratios of uranium ore concentrates: understanding the 238U/235U fractionation mechanism[J]. Earth and Planetary Science Letters, 2010, 291(1/2/3/4): 228-233. |
[40] | KUMP L R, KASTING J F, BARLEY M E. Rise of atmospheric oxygen and the “upside-down” Archean mantle[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1): 2000GC000114. |
[41] | KUMP L R. The rise of atmospheric oxygen[J]. Nature, 2008, 451(7176): 277-278. |
[42] | DUNK R M, MILLS R A, JENKINS W J. A reevaluation of the oceanic uranium budget for the Holocene[J]. Chemical Geology, 2002, 190(1/2/3/4): 45-67. |
[43] | HAZEN R M, EWING R C, SVERJENSKY D A. Evolution of uranium and thorium minerals[J]. American Mineralogist, 2009, 94(10): 1293-1311. |
[44] | BEKKER A, HOLLAND H D. Oxygen overshoot and recovery during the early Paleoproterozoic[J]. Earth and Planetary Science Letters, 2012, 317/318: 295-304. |
[45] | FIKE D A, GROTZINGER J P, PRATT L M, et al. Oxidation of the Ediacaran Ocean[J]. Nature, 2006, 444(7120): 744-747. |
[46] | CANFIELD D E, POULTON S W, NARBONNE G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808): 92-95. |
[47] | KRAUSE A J, MILLS B J W, ZHANG S, et al. Stepwise oxygenation of the Paleozoic atmosphere[J]. Nature Communications, 2018, 9: 4081. |
[48] | NOORDMANN J, WEYER S, GEORG R B, et al. 238U/235U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance[J]. Isotopes in Environmental and Health Studies, 2016, 52(1/2): 141-163. |
[49] | ANDERSEN M B, STIRLING C H, WEYER S. Uranium isotope fractionation[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 799-850. |
[50] | SARMIENTO J L, GRUBER N. Ocean biogeochemical dynamics: calcium carbonate cycle[M]. Princeton: Princeton University Press, 2006. |
[51] | ANDERSEN M B, ROMANIELLO S, VANCE D, et al. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194. |
[52] | ROLISON J M, STIRLING C H, MIDDAG R, et al. Uranium stable isotope fractionation in the Black Sea: modern calibration of the 238U/235U paleo-redox proxy[J]. Geochimica et Cosmochimica Acta, 2017, 203: 69-88. |
[53] | ROMANIELLO S J, BRENNECKA G, ANBAR A D, et al. Natural isotopic fractionation of 238U/235U in the water column of the Black Sea[C]// AGU fall meeting abstracts. San Francisco, CA, USA, 2009: V54C-06. |
[54] | HOLMDEN C, AMINI M, FRANCOIS R. Uranium isotope fractionation in Saanich Inlet: a modern analog study of a paleoredox tracer[J]. Geochimica et Cosmochimica Acta, 2015, 153: 202-215. |
[55] | ZHANG F F, ALGEO T J, ROMANIELLO S J, et al. Congruent Permian-Triassic δ238U records at Panthalassic and Tethyan sites: confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy[J]. Geology, 2018, 46(4): 327-330. |
[56] | ABSHIRE M L, ROMANIELLO S J, KUZMINOV A M, et al. Uranium isotopes as a proxy for primary depositional redox conditions in organic-rich marine systems[J]. Earth and Planetary Science Letters, 2020, 529: 115878. |
[57] | BRÜSKE A, MARTIN A N, RAMMENSEE P, et al. The onset of oxidative weathering traced by uranium isotopes[J]. Precambrian Research, 2020, 338: 105583. |
[58] | STAUDIGEL H, DAVIES G R, HART S R, et al. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites417/418[J]. Earth and Planetary Science Letters, 1995, 130(1/2/3/4): 169-185. |
[59] | BACH W, PEUCKER-EHRENBRINK B, HART S R, et al. Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B: implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3): 103-130. |
[60] | KELLEY K, PLANK T, FARR L, et al. Subduction cycling of U, Th, and Pb[J]. Earth and Planetary Science Letters, 2005, 234(3/4): 369-383. |
[61] | GOTO K T, ANBAR A D, GORDON G W, et al. Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: implications for the marine 238U/235U isotope system[J]. Geochimica et Cosmochimica Acta, 2014, 146: 43-58. |
[62] | WANG X, PLANAVSKY N J, REINHARD C T, et al. A Cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts[J]. American Journal of Science, 2016, 316(1): 64-83. |
[63] | ROMANIELLO S J, HERRMANN A D, ANBAR A D. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: assessing a novel paleoredox proxy[J]. Chemical Geology, 2013, 362: 305-316. |
[64] | ZHANG F F, LENTON T M, DEL REY Á, et al. Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: a critical review[J]. Geochimica et Cosmochimica Acta, 2020, 287: 27-49. |
[65] | LAU K V, LYONS T W, MAHER K. Uranium reduction and isotopic fractionation in reducing sediments: insights from reactive transport modeling[J]. Geochimica et Cosmochimica Acta, 2020, 287: 65-92. |
[66] | CHEN X M, ROMANIELLO S J, HERRMANN A D, et al. Uranium isotope fractionation during coprecipitation with aragonite and calcite[J]. Geochimica et Cosmochimica Acta, 2016, 188: 189-207. |
[67] | CHEN X, ROMANIELLO S J, HERRMANN A D, et al. Diagenetic effects on uranium isotope fractionation in carbonate sediments from the Bahamas[J]. Geochimica et Cosmochimica Acta, 2018, 237: 294-311. |
[68] | TISSOT F L, CHEN C, GO B M, et al. Controls of eustasy and diagenesis on the 238U/235U of carbonates and evolution of the seawater (234U/238U) during the last 1.4 Myr[J]. Geochimica et Cosmochimica Acta, 2018, 242: 233-265. |
[69] | 杨琰, 袁道先, 程海, 等. 洞穴石笋初始234U/238U值变化的古气候记录意义[J]. 地质学报, 2008, 82(5): 692-701. |
[70] | 韩军, 郝伟林, 王志明, 等. 我国西北地区盐湖中234U/238U比值与铀关系研究: 以内蒙古地区碳酸盐型盐湖为例[J]. 地质学报, 2013, 87(9): 1447-1460. |
[71] | PACES J B, WURSTER F C. Natural uranium and strontium isotope tracers of water sources and surface water-groundwater interactions in arid wetlands: Pahranagat Valley, Nevada, USA[J]. Journal of Hydrology, 2014, 517: 213-225. |
[72] | 邵阳, 杨国胜, 张继龙, 等. 人工放射性核素236U的分析方法进展及其应用[J]. 化学学报, 2021, 79(6): 716-728. |
[73] | MERKEL B, HASCHE-BERGER A. Uranium in the environment: mining impact and consequences[M]. Berlin, Heidelberg: Springer, 2006. |
[74] | 曹龙生, 杨亚新, 张叶, 等. 中国大陆主要省份土壤中天然放射性核素含量分布规律研究[J]. 东华理工大学学报(自然科学版), 2012, 35(2): 167-172. |
[75] | 汪伟, 李志明, 徐江, 等. 铀颗粒物中235U/238U的LA-MC-ICP-MS分析技术研究[J]. 质谱学报, 2016, 37(3): 213-221. |
[76] | RADEMACHER L K, LUNDSTROM C C, JOHNSON T M, et al. Experimentally determined uranium isotope fractionation during reduction of hexavalent U by bacteria and zero valent iron[J]. Environmental Science and Technology, 2006, 40(22): 6943-6948. |
[77] | BASU A, SANFORD R A, JOHNSON T M, et al. Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates[J]. Geochimica et Cosmochimica Acta, 2014, 136: 100-113. |
[78] | STYLO M, NEUBERT N, WANG Y H, et al. Uranium isotopes fingerprint biotic reduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5619-5624. |
[79] | BASU A, WANNER C, JOHNSON T M, et al. Microbial U isotope fractionation depends on the U (VI) reduction rate[J]. Environmental Science and Technology, 2020, 54(4): 2295-2303. |
[80] | STIRLING C H, ANDERSEN M B, WARTHMANN R, et al. Isotope fractionation of 238U and 235U during biologically-mediated uranium reduction[J]. Geochimica et Cosmochimica Acta, 2015, 163: 200-218. |
[81] | BROWN S T, BASU A, DING X, et al. Uranium isotope fractionation by abiotic reductive precipitation[J]. Proceedings of the National Academy of Sciences, 2018, 115(35): 8688-8693. |
[82] | BRENNECKA G A, WASYLENKI L E, BARGAR J R, et al. Uranium isotope fractionation during adsorption to Mn-oxyhydroxides[J]. Environmental Science and Technology, 2011, 45(4): 1370-1375. |
[83] | DANG D H, NOVOTNIK B, WANG W, et al. Uranium isotope fractionation during adsorption, (co)precipitation, and biotic reduction[J]. Environmental Science and Technology, 2016, 50(23): 12695-12704. |
[84] | CHEN X M, ZHENG W, ANBAR A D. Uranium isotope fractionation (238U/235U) during U(VI) uptake by freshwater plankton[J]. Environmental Science and Technology, 2020, 54(5): 2744-2752. |
[85] | CHEN X M, ROMANIELLO S J, HERRMANN A D, et al. Biological effects on uranium isotope fractionation in primary biogenic carbonates[J]. Geochimica et Cosmochimica Acta, 2018, 240: 1-10. |
[86] | HOOD A V S, PLANAVSKY N J, WALLACE M W, et al. Integrated geochemical-petrographic insights from component-selective δ238U of Cryogenian marine carbonates[J]. Geology, 2016, 44(11): 935-938. |
[87] | HERRMANN A D, GORDON G W, ANBAR A D. Uranium isotope variations in a dolomitized Jurassic carbonate platform (Tithonian; Franconian Alb, Southern Germany)[J]. Chemical Geology, 2018, 497: 41-53. |
[88] | HOOD A V S, PLANAVSKY N J, WALLACE M W, et al. The effects of diagenesis on geochemical paleoredox proxies in sedimentary carbonates[J]. Geochimica et Cosmochimica Acta, 2018, 232: 265-287. |
[89] | DAHL T W, CONNELLY J N, LI D, et al. Atmosphere-ocean oxygen and productivity dynamics during early animal radiations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19352-19361. |
[90] | ELLIS A S, JOHNSON T M, BULLEN T D. Chromium isotopes and the fate of hexavalent chromium in the environment[J]. Science, 2002, 295(5562): 2060-2062. |
[91] | ELLIS A S, JOHNSON T M, HERBEL M J, et al. Stable isotope fractionation of selenium by natural microbial consortia[J]. Chemical Geology, 2003, 195(1/2/3/4): 119-129. |
[92] | JOHNSON T M, BULLEN T D. Selenium isotope fractionation during reduction by Fe(II)-Fe(III) hydroxide-sulfate (green rust)[J]. Geochimica et Cosmochimica Acta, 2003, 67(3): 413-419. |
[93] | ZHU G Y, CHEN F R, WANG M, et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151. |
[94] | ZHU G Y, MILKOV A V, ZHANG Z Y, et al. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China[J]. AAPG Bulletin, 2019, 103(7): 1703-1743. |
[95] | ZHU G Y, LI T T, ZHAO K, et al. Mo isotope records from Lower Cambrian black shales, northwestern Tarim Basin (China): implications for the early Cambrian Ocean[J]. GSA Bulletin, 2022, 134(1/2): 3-14. |
[96] | ABE M, SUZUKI T, FUJII Y, et al. An ab initio molecular orbital study of the nuclear volume effects in uranium isotope fractionations[J]. The Journal of Chemical Physics, 2008, 129(16): 164309. |
[97] | JEMISON N E, JOHNSON T M, SHIEL A E, et al. Uranium isotopic fractionation induced by U(VI) adsorption onto common aquifer minerals[J]. Environmental Science and Technology, 2016, 50(22): 12232-12240. |
[98] | FANTLE M S, BARNES B D, LAU K V. The role of diagenesis in shaping the geochemistry of the marine carbonate record[J]. Annual Review of Earth and Planetary Sciences, 2020, 48: 549-583. |
[99] | WHITE D A, ELRICK M, ROMANIELLO S, et al. Global seawater redox trends during the Late Devonian mass extinction detected using U isotopes of marine limestones[J]. Earth and Planetary Science Letters, 2018, 503: 68-77. |
[100] | NING M, LANG X G, HUANG K J, et al. Towards understanding the origin of massive dolostones[J]. Earth and Planetary Science Letters, 2020, 545: 116403. |
[101] | LAU K V, MAHER K, ALTINER D, et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2360-2365. |
[102] | TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72. |
[103] | SAMTLEBEN C, MUNNECKE A, BICKERT T, et al. Shell succession, assemblage and species dependent effects on the C/O-isotopic composition of brachiopods: examples from the Silurian of Gotland[J]. Chemical Geology, 2001, 175(1/2): 61-107. |
[104] | WEI G Y, PLANAVSKY N J, TARHAN L G, et al. Marine redox fluctuation as a potential trigger for the Cambrian explosion[J]. Geology, 2018, 46(7), 587-590. |
[105] | BOPP C J IV, LUNDSTROM C C, JOHNSON T M, et al. Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, USA[J]. Environmental Science and Technology, 2010, 44(15): 5927-5933. |
[106] | JEMISON N E, SHIEL A E, JOHNSON T M, et al. Field application of 238U/235U measurements to detect reoxidation and mobilization of U(IV)[J]. Environmental Science and Technology, 2018, 52(6): 3422-3430. |
[107] | SHIEL A E, LAUBACH P G, JOHNSON T M, et al. No measurable changes in 238U/235U due to desorption-adsorption of U(VI) from groundwater at the Rifle, Colorado, integrated field research challenge site[J]. Environmental Science and Technology, 2013, 47(6): 2535-2541. |
[108] | 钟娟, 刘兴宇, 张明江, 等. 铀污染的微生物修复技术研究进展[J]. 稀有金属, 2021, 45(1): 93-105. |
[109] | WANG J, YIN M L, LIU J, et al. Geochemical and U-Th isotopic insights on uranium enrichment in reservoir sediments[J]. Journal of Hazardous Materials, 2021, 414: 125466. |
[110] | ACIEGO S M, AARONS S M, SIMS K. The uranium-isotopic composition of Saharan dust collected over the central Atlantic Ocean[J]. Aeolian Research, 2015, 17: 61-66. |
[111] | BELLIS D, MA R, BRAMALL N, et al. Airborne emission of enriched uranium at Tokai-mura, Japan[J]. Science of the Total Environment, 2001, 264(3): 283-286. |
[112] | SHINONAGA T, STEIER P, LAGOS M, et al. Airborne plutonium and non-natural uranium from the fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions[J]. Environmental Science and Technology, 2014, 48(7): 3808-3814. |
[113] | 邱晨, 魏广祎, 闵思雨, 等. 寒武纪第十期早期海洋氧化还原波动: 来自U同位素的证据[J]. 高校地质学报, 2022, 28(1): 40-50. |
[114] | BRENNECKA G A, HERRMANN A D, ALGEO T J, et al. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): 17631-17634. |
[115] | DAHL T W, BOYLE R A, CANFIELD D E, et al. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event[J]. Earth and Planetary Science Letters, 2014, 401: 313-326. |
[116] | GILLEAUDEAU G J, ROMANIELLO S J, LUO G M, et al. Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans[J]. Earth and Planetary Science Letters, 2019, 521: 150-157. |
[117] | ROONEY A D, CANTINE M D, BERGMANN K D, et al. Calibrating the coevolution of Ediacaran life and environment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29): 16824-16830. |
[118] | CHENG K Y, ELRICK M, ROMANIELLO S J. Early Mississippian Ocean anoxia triggered organic carbon burial and Late Paleozoic cooling: evidence from uranium isotopes recorded in marine limestone[J]. Geology, 2020, 48(4): 363-367. |
[119] | WEI W, FREI R, KLAEBE R, et al. A transient swing to higher oxygen levels in the atmosphere and oceans at -1.4 Ga[J]. Precambrian Research, 2021, 354: 106058. |
[120] | 李聪颖, 吴思璠. 大洋缺氧事件金属稳定同位素研究进展[J]. 地球科学进展, 2022, 37(11): 1127-1140. |
[121] | KENDALL B, BRENNECKA G A, WEYER S, et al. Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga[J]. Chemical Geology, 2013, 362: 105-114. |
[122] | KENDALL B, KOMIYA T, LYONS T W, et al. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period[J]. Geochimica et Cosmochimica Acta, 2015, 156: 173-193. |
[123] | YANG S, KENDALL B, LU X Z, et al. Uranium isotope compositions of mid-Proterozoic black shales: evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flow[J]. Precambrian Research, 2017, 298: 187-201. |
[124] | WANG X L, PLANAVSKY N J, HOFMANN A, et al. A Mesoarchean shift in uranium isotope systematics[J]. Geochimica et Cosmochimica Acta, 2018, 238: 438-452. |
[125] | WANG X L, OSSA OSSA F, HOFMANN A, et al. Uranium isotope evidence for Mesoarchean biological oxygen production in shallow marine and continental settings[J]. Earth and Planetary Science Letters, 2020, 551: 116583. |
[126] | KENDALL B, WANG J Y, ZHENG W, et al. Inverse correlation between the molybdenum and uranium isotope compositions of Upper Devonian black shales caused by changes in local depositional conditions rather than global ocean redox variations[J]. Geochimica et Cosmochimica Acta, 2020, 287: 141-164. |
[127] | LAU K V, HANCOCK L G, SEVERMANN S, et al. Variable local basin hydrography and productivity control the uranium isotope paleoredox proxy in anoxic black shales[J]. Geochimica et Cosmochimica Acta, 2022, 317: 433-456. |
[128] | 孙占学, 刘媛媛, 马文洁, 等. 铀矿区地下水及其生态安全研究进展[J]. 地学前缘, 2014, 21(4): 158-167. |
[129] | WAGGITT P. Uranium mining legacies remediation and renaissance development: an international overview[M]// Uranium, mining and hydrogeology. Berlin, Heidelberg: Springer, 2008: 11-18. |
[130] | CHE H Z, ZHANG X Y, LI Y, et al. Haze trends over the capital cities of 31 provinces in China, 1981-2005[J]. Theoretical and Applied Climatology, 2009, 97(3): 235-242. |
[131] | 刘永春, 贺泓. 大气颗粒物化学组成分析[J]. 化学进展, 2007, 19(10): 1620-1631. |
[132] | TOSTEVIN R, CLARKSON M O, GANGL S, et al. Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran Oceans[J]. Earth and Planetary Science Letters, 2019, 506: 104-112. |
[133] | CANFIELD D E. The early history of atmospheric oxygen: homage to Robert M. Garrels[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 1-36. |
[134] | SPERLING E A, WOLOCK C J, MORGAN A S, et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation[J]. Nature, 2015, 523(7561): 451-454. |
[135] | POULTON S W, FRALICK P W, CANFIELD D E. Spatial variability in oceanic redox structure 1.8 billion years ago[J]. Nature Geoscience, 2010, 3(7): 486-490. |
[136] | SAHOO S K, PLANAVSKY N J, KENDALL B, et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7417): 546-549. |
[137] | FIKE D A, GROTZINGER J P. A paired sulfate-pyrite δ34S approach to understanding the evolution of the Ediacaran-Cambrian sulfur cycle[J]. Geochimica et Cosmochimica Acta, 2008, 72(11): 2636-2648. |
[138] | FIKE D A, BRADLEY A S, ROSE C V. Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 593-622. |
[139] | STÜEKEN E E, BUICK R, GUY B M, et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr[J]. Nature, 2015, 520(7549): 666-669. |
[140] | TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32. |
[141] | LAU K V, ROMANIELLO S J, ZHANG F F. The uranium isotope paleoredox proxy[M]. Cambridge: Cambridge University Press, 2019. |
[1] | 张佳文, 李明超, 韩帅, 张敬宜. 基于集成量子神经网络的大地构造环境判别与分析[J]. 地学前缘, 2024, 31(3): 511-519. |
[2] | 路来君, 曹梦雪, 谭雨蕾. 地球科学研究的泛量子化问题[J]. 地学前缘, 2023, 30(5): 402-406. |
[3] | 王跃, 苏尚国, 张旗, 周奇明, 张雅南. 内蒙古大井铜锡多金属矿床矿石中Cu-S同位素特征及成矿预测[J]. 地学前缘, 2022, 29(3): 319-328. |
[4] | 成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6-25. |
[5] | 赵鹏大, 陈永清. 数字地质与数字矿产勘查[J]. 地学前缘, 2021, 28(3): 1-5. |
[6] | 周秋石, 王瑞. 氯同位素地球化学研究进展[J]. 地学前缘, 2020, 27(3): 42-67. |
[7] | 罗照华. 流体地球科学与地球系统科学[J]. 地学前缘, 2018, 25(6): 277-282. |
[8] | 朱建明, 谭德灿, 王静, 曾理. 硒同位素地球化学研究进展与应用[J]. 地学前缘, 2015, 22(5): 102-114. |
[9] | 王泽洲, 刘盛遨, 李丹丹, 吕逸文, 吴松, 赵云. 铜同位素地球化学及研究新进展[J]. 地学前缘, 2015, 22(5): 72-83. |
[10] | 李小虎, 初凤友, 雷吉江, 余星, 张平萍. 青海德尔尼铜(锌钴)矿床硫化物Cu同位素组成及矿床成因探讨[J]. 地学前缘, 2014, 21(1): 196-204. |
[11] | 刘川江,郑海飞. 金刚石压腔(DAC)技术及其在地球科学中的应用[J]. 地学前缘, 2012, 19(4): 141-150. |
[12] | 李胜荣 许虹 申俊峰 李国武 张秀宝. 环境与生命矿物学的科学内涵与研究方法[J]. 地学前缘, 2008, 15(6): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||