地学前缘 ›› 2024, Vol. 31 ›› Issue (1): 111-126.DOI: 10.13745/j.esf.sf.2023.11.8
收稿日期:
2023-10-20
修回日期:
2023-11-06
出版日期:
2024-01-25
发布日期:
2024-01-25
通信作者:
*沈 冰(1979—),男,博士,教授,博士生导师,主要从事地球生物学、天体生物学、低温地球化学和古生物学的研究。E-mail: 作者简介:
王瑞敏(1998—),女,博士研究生,主要从事早期地球环境演化、地球生物学和低温地球化学研究。E-mail: ruiminwang@pku.edu.cn
基金资助:
Received:
2023-10-20
Revised:
2023-11-06
Online:
2024-01-25
Published:
2024-01-25
摘要:
条带状铁建造(banded iron formation,BIF)是指以铁-硅韵律层结构为特征的化学沉积岩。BIF不仅是重要的铁资源,也是记录早期地球演化、早期微生物活动和大气-海洋氧化还原状态的重要载体。BIF的出现和消失与重要环境事件的演变密切相关。BIF在>3.8 Ga首次出现,并在第一次大氧化事件前大量形成,在1.8~0.8 Ga沉积中断,而在成冰纪雪球地球冰期中复现,最终消失在显生宙的氧化海洋中。传统模型认为BIF的出现与消失主要受控于海洋中Fe(II)离子的含量。在1.8~0.8 Ga期间,构造-岩浆-热液活动减弱,海洋氧化还原剧变(氧化/硫化)导致海水中的Fe(II)被大量耗尽,BIF消失。然而,地球化学证据表明中元古代深海区域仍处于铁化状态,即Fe(II) 可以稳定存在的氧化还原状态;沉积学证据也表明中元古代仍有大量的铁岩沉积。这些富铁沉积的大量出现,表明中元古代的海洋仍具有沉积铁岩/富铁层的条件,只是不再出现BIF这种“铁-硅互层”的韵律沉积。因此,BIF在1.8~0.8 Ga的沉积中断并不是由Fe(II)耗尽造成的,而很可能与海水中铁-硅循环变化导致“铁-硅互层”沉积模式的改变有关。本文对BIF的地质学特征进行了概述,深入探讨了BIF中富铁-富硅层的沉积模式,并从Fe(II)的来源差异和Fe(II)的氧化差异及Fe(III)的保存差异3方面全面综述了BIF “铁-硅互层”机制的研究进展。在此基础上,尝试找出解决中元古代BIF消失之谜的可能方向。最后,对BIF的成因机制所承载的前寒武纪铁-硅生物地球化学循环、早期地球演化过程和早期生命信息等方面提出展望。
中图分类号:
王瑞敏, 沈冰. 条带状铁建造消失之谜:铁-硅互层机制研究进展与展望[J]. 地学前缘, 2024, 31(1): 111-126.
WANG Ruimin, SHEN Bing. The disappearance of banded iron formations: Research progress and perspectives on the origin of rhythmic Fe-rich/Si-rich laminae[J]. Earth Science Frontiers, 2024, 31(1): 111-126.
图1 地质历史时期BIF的分布、生物演化、岩浆活动及大气-海洋氧化还原状态。阴影表明前寒武纪缺失BIF沉积的时段 a—BIF、GIF及菱铁矿在地质历史时期的分布;b—大气氧气浓度的演化;c—地球历史时期地幔柱的分布;d—海洋氧化还原状态的演化;e—地质历史时期生物演化。 (a和c据文献[3]修改;b据文献[10]修改;d据文献[23]修改。)
Fig.1 BIF abundances and in correlation with influencing factors through geological history. The grey shadow represents the disappearance of BIF. (a) Distribution of marine iron-rich deposits (modified from [3]). (b) Evolution of the atmospheric pO2 level (modified from [23]). (c) Distribution of mantle superplumes (modified from [3]). (d) Ocean redox structure through time (modified from [23]). (e) The evolutionary history of major clades of life.
地区 | 国家 | 组名 | 时代 | 含铁矿物类型 | 含铁量 |
---|---|---|---|---|---|
华北燕辽地区 | 中国 | 下马岭组 | 约1.4 Ga | 层状菱铁矿、铁白云石结核等 | 520 Gt? |
华北燕辽地区 | 中国 | 串岭沟组 | 约1.6 Ga | 鲕状、肾状、块状、叠层石状铁岩 | 未知 |
祁连山地区 | 中国 | 镜铁山组 | 约1.3 Ga | 层状镜铁矿 | 未知 |
黛眉山地区 | 中国 | 云梦山组 | 约1.7 Ga | 赤铁矿 | 未知 |
神农架地区 | 中国 | 矿石山组 | 约1.3 Ga | 菱铁矿 | 未知 |
神农架地区 | 中国 | 送子园组 | 约1.1 Ga | 磁铁矿 | 未知 |
柴达木地区 | 中国 | 红藻山组 | 1.6~0.7 Ga? | 赤铁矿 | 未知 |
Northern Territory | 澳大利亚 | Roper组 | 约1.5 Ga | 薄层鲕状铁岩 | 未知 |
Queensland | 澳大利亚 | South Nicholson群 | 约1.5 Ga | 富铁层 | 未知 |
Eastern Botswana | 博茨瓦纳 | Shoshong组 | 约1.6 Ga | 层状铁岩 | 1 Gt |
表1 中元古代铁建造
Table 1 Non-BIF ironstones in the Mesoproterozoic
地区 | 国家 | 组名 | 时代 | 含铁矿物类型 | 含铁量 |
---|---|---|---|---|---|
华北燕辽地区 | 中国 | 下马岭组 | 约1.4 Ga | 层状菱铁矿、铁白云石结核等 | 520 Gt? |
华北燕辽地区 | 中国 | 串岭沟组 | 约1.6 Ga | 鲕状、肾状、块状、叠层石状铁岩 | 未知 |
祁连山地区 | 中国 | 镜铁山组 | 约1.3 Ga | 层状镜铁矿 | 未知 |
黛眉山地区 | 中国 | 云梦山组 | 约1.7 Ga | 赤铁矿 | 未知 |
神农架地区 | 中国 | 矿石山组 | 约1.3 Ga | 菱铁矿 | 未知 |
神农架地区 | 中国 | 送子园组 | 约1.1 Ga | 磁铁矿 | 未知 |
柴达木地区 | 中国 | 红藻山组 | 1.6~0.7 Ga? | 赤铁矿 | 未知 |
Northern Territory | 澳大利亚 | Roper组 | 约1.5 Ga | 薄层鲕状铁岩 | 未知 |
Queensland | 澳大利亚 | South Nicholson群 | 约1.5 Ga | 富铁层 | 未知 |
Eastern Botswana | 博茨瓦纳 | Shoshong组 | 约1.6 Ga | 层状铁岩 | 1 Gt |
图2 中国前寒武纪典型BIF与中元古代铁矿的野外照片 a—新太古代唐山司家营BIF铁矿(约2.5 Ga);b—新元古代下甲江剖面富禄组BIF(约0.7 Ga);c—新元古代产口剖面富禄组BIF(约0.7 Ga);d—中元古代芹峪村剖面下马岭组菱铁矿结核;e—中元古代宣化地区串岭沟组鲕铁岩;f—中元古代夹皮沟剖面镜铁矿;g—中元古代神农架地区送子园组铁岩;h—中元古代神农架地区矿石山组铁岩;i—中元古代柴达木地区全吉山剖面红藻山组铁岩。
Fig.2 Field photos of typical Precambrian BIFs and mid-Proterozoic iron formations in China. (a) BIFs (~2.5 Ga), Sijiaying Section. (b-c) BIFs (~0.7 Ga), basal Fulu Formation. (d) Siderite (~1.4 Ga), Xiamaling Formation. (e) Oolite ironstones (~1.6 Ga), Chuanlinggou Formation. (f) Specularite (~1.3 Ga), Jingtieshan Formation. (g) Ironstone (~1.1 Ga), Songziyuan Formation. (h) Ironstone (~1.3 Ga), Kuangshishan Formation. (i) Ironstone, top of the Hongzaoshan Formation.
图3 BIF和同时期硅质岩中Si同位素的系统差异及铁-硅循环示意图 a—BIF与硅质岩中石英Si同位素对比,地球硅酸盐(BSE)组成约为-0.4‰;b—铁-硅循环耦合图。 (图a数据来自文献[43]及其中文献)
Fig.3 Isotopic characteristics of Precambrian BIFs and BIF formation model. (a) Distribution of Si isotopic compositions in Precambrian cherts and BIFs (data from from [43] and references therein). (b) Formation of BIFs through co-precipitation of silica and Fe(OOH)-silica gels during iron cycling.
图4 以“铁的热液来源差异”为核心的BIF铁-硅韵律层成因假说 a—强调多次热液活动及铁还原作用强弱对铁-硅韵律层形成的影响;b—强调单次热液活动期间海水温度与氧逸度的差异对铁-硅韵律层的影响;c—则表示贫铝洋壳使得大量的Fe(II)与硅酸根离子在热液中富集而发生的自组织反应。 (a据文献[85]修改,b据文献[84]修改)
Fig.4 Hypotheses on the origin of rhythmic Fe-rich/Si-rich laminae in BIFs, focusing on hydrothermal origin of Fe(II). Emphases are place on (a) periodical seafloor hydrothermal eruption ( modified from [85]), (b) mixing of hydrothermal fluids and seawater during single eruption (modified from [84]), or (c) self organization resulted by co-enrichment of Fe/Si in hydrothermal fluids.
铁的差异性 | 假说 | 评估 | |||
---|---|---|---|---|---|
铁-硅来源 | 时间尺度 | 沉积环境 | 地史分布 | ||
铁的供给差异 | 热液周期性喷发 | A | B | C | B |
单次热液喷发 | A | A | C | B | |
自组织反应(pH控制) | A | A | C | A | |
铁的氧化差异 | 周期性上升流活动 | A | A | A | C |
海水温度变化 | B | A | A | C | |
微生物光合作用变化 | B | A | A | C | |
海平面变化 | B | B | A | C | |
铁的保存差异 | 表层生产力/输入有机物变化 | B | A | A | B |
表2 BIF“铁-硅互层”机制假说评述
Table 2 Evaluation of different hypotheses on the origin of rhythmic Fe-rich/Si-rich laminae in BIFs
铁的差异性 | 假说 | 评估 | |||
---|---|---|---|---|---|
铁-硅来源 | 时间尺度 | 沉积环境 | 地史分布 | ||
铁的供给差异 | 热液周期性喷发 | A | B | C | B |
单次热液喷发 | A | A | C | B | |
自组织反应(pH控制) | A | A | C | A | |
铁的氧化差异 | 周期性上升流活动 | A | A | A | C |
海水温度变化 | B | A | A | C | |
微生物光合作用变化 | B | A | A | C | |
海平面变化 | B | B | A | C | |
铁的保存差异 | 表层生产力/输入有机物变化 | B | A | A | B |
图5 以“铁的氧化机制差异”为核心的BIF铁-硅韵律层成因假说 a—强调热液活动及上升流活动强弱与陆源SiO2输入量的竞争决定富硅层与富铁层的沉积;b—强调透光带温度变化对铁-硅韵律层的影响;c—强调营养元素输入等因素对光合作用生物的影响,从而控制铁-硅层的形成;d—则表示海平面变化带来的氧化还原界面移动对铁-硅韵律层沉积的影响。 (a据文献[83]修改)
Fig.5 Hypotheses on the origin of rhythmic Fe-rich/Si-rich laminae in BIFs, focusing on the mechanisms of Fe(II) oxidation. Emphases are placed on (a) periodic upwelling of hydrothermal fluids (modified from [83]), (b) temperature variation in the euphotic zone, (c) effect of nutrient input on photosynthesis, or (d) sea level change.
图6 以“铁的保存差异”为核心的BIF铁-硅韵律层成因假说(据文献[97]修改) 伴随着生产力的增加,水体中有机物输入增多,使得微生物铁还原作用强烈,大量Fe(III)被还原为Fe(II)而无法进入沉积物中,此时为富硅层沉积;反之,为富铁层沉积。
Fig.6 Hypothesis on the origin of rhythmic Fe-rich/Si-rich laminae in BIFs focusing on microbial dissimilatory iron reduction (modified from [97])
[1] |
JAMES H L. Sedimentary facies of iron-formation[J]. Economic Geology, 1954, 49(3): 235-293.
DOI URL |
[2] |
KLEIN C. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins[J]. American Mineralogist, 2005, 90(10): 1473-1499.
DOI URL |
[3] | BEKKER A, PLANAVSKY N J, KRAPEŽ B, et al. Iron Formations: their origins and implications for ancient seawater chemistry[J]. Treatise on Geochemistry, 2014, 9: 561-628. |
[4] |
WANG C, ROBBINS L J, PLANAVSKY N J, et al. Archean to early Paleoproterozoic iron formations document a transition in iron oxidation mechanisms[J]. Geochimica et Cosmochimica Acta, 2023, 343: 286-303.
DOI URL |
[5] | GROSS G A. A classification of iron formations based on depositional environments[J]. The Canadian Mineralogist, 1980, 18(2): 215-222. |
[6] | BEUKES N, GUTZMER J. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic Boundary[J]. Reviews in Economic Geology, 2008, 15: 5-47. |
[7] |
LYONS T W, DIAMOND C W, PLANAVSKY N J, et al. Oxygenation, life, and the planetary system during Earth's middle history: an overview[J]. Astrobiology, 2021, 21(8): 906-923.
DOI PMID |
[8] |
JICKELLS T D, AN Z S, ANDERSEN K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5718): 67-71.
DOI PMID |
[9] |
TRéGUER P J, ROCHA C L D L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5(1): 477-501.
DOI URL |
[10] |
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.
DOI |
[11] | ISLEY A E, ABBOTT D H. Plume-related mafic volcanism and the deposition of banded iron formation[J]. Journal of Geophysical Research: Solid Earth, 1999, 104: 15461. |
[12] |
BARLEY M E, PICKARD A L, SYLVESTER P J. Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago[J]. Nature, 1997, 385(6611): 55-58.
DOI |
[13] |
RASMUSSEN B, FLETCHER I R, BEKKER A, et al. Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth[J]. Nature, 2012, 484(7395): 498-501.
DOI |
[14] | HOLLAND H D. The Chemical Evolution of the Atmosphere and Oceans[M]. Princeton: Princeton University Press, 1984. |
[15] |
CLOUD P E. A working model of the primitive Earth[J]. American Journal of Science, 1972, 272: 537-548.
DOI URL |
[16] |
CANFIELD D E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396: 450-453.
DOI |
[17] |
POULTON S W, FRALICK P W, CANFIELD D E. Spatial variability in oceanic redox structure 1.8 billion years ago[J]. Nature Geoscience, 2010, 3(7): 486-490.
DOI |
[18] | WANG C, LECHTE M A, REINHARD C T, et al. Strong evidence for a weakly oxygenated ocean-atmosphere system during the Proterozoic[J]. Proceedings of the National Academy of Sciences, 2022, 119(6): e2116101119. |
[19] |
SHANG M, TANG D, SHI X, et al. A pulse of oxygen increases in the early Mesoproterozoic ocean at ca. 1.57-1.56 Ga[J]. Earth and Planetary Science Letters, 2019, 527: 115797.
DOI URL |
[20] | 张水昌, 王华建, 王晓梅, 等. 中元古代增氧事件[J]. 中国科学: 地球科学, 2022, 52(1): 26-52. |
[21] |
PLANAVSKY N J, MCGOLDRICK P, SCOTT C T, et al. Widespread iron-rich conditions in the mid-Proterozoic ocean[J]. Nature, 2011, 477(7365): 448-451.
DOI |
[22] |
PLANAVSKY N J, REINHARD C T, WANG X, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209): 635-638.
DOI URL |
[23] |
GUILBAUD R, POULTON S W, BUTTERFIELD N J, et al. A global transition to ferruginous conditions in the early Neoproterozoic oceans[J]. Nature Geoscience, 2015, 8(6): 466-470.
DOI |
[24] | 朱祥坤, 张衎, 张飞飞, 等. 蓟县中元古界下马岭组中菱铁矿的发现及其意义[J]. 地质论评, 2013, 59(5): 816-822. |
[25] | CANFIELD D E, ZHANG S, WANG H, et al. A Mesoproterozoic iron formation[J]. Proceedings of the National Academy of Sciences, 2018, 115(17): E3895-E904. |
[26] |
TANG D, SHI X, JIANG G, et al. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: genesis and environmental implications[J]. Gondwana Research, 2018, 58: 1-15.
DOI URL |
[27] |
SU W, ZHANG S, HUFF W D, et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton[J]. Gondwana Research, 2008, 14(3): 543-53.
DOI URL |
[28] | 李志红, 朱祥坤. 河北省宣龙式铁矿的地球化学特征及其地质意义[J]. 岩石学报, 2012, 28(9): 2903-11. |
[29] | 汤冬杰, 史晓颖, 刘典波, 等. 华北古元古代末鲕铁岩: Columbia超大陆裂解初期的沉积响应[J]. 地球科学: 中国地质大学学报, 2015, 24(2): 290-304. |
[30] | 杨合群, 赵东宏. 甘肃镜铁山含铜条带状铁建造的年龄[J]. 西北地质科学, 1999, 20 (1): 1-3. |
[31] |
YANG X, ZHANG Z, GUO S, et al. Geochronological and geochemical studies of the metasedimentary rocks and diabase from the Jingtieshan deposit, North Qilian, NW China: constraints on the associated banded iron formations[J]. Ore Geology Reviews, 2016, 73: 42-58.
DOI URL |
[32] |
QIU Y, ZHAO T, LI Y. The Yunmengshan iron formation at the end of the Paleoproterozoic era[J]. Applied Clay Science, 2020, 199: 105888.
DOI URL |
[33] | QIU Y, QIN L, HUANG F, et al. Early prosperity of iron bacteria at the end of the Paleoproterozoic Era[J]. Geophysical Research Letters, 2022, 49(9): e2022GL097877. |
[34] |
KENDALL B, CREASER R A, GORDON G W, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2534-2558.
DOI URL |
[35] |
LI D, LUO G, YANG H, et al. Characteristics of the carbon cycle in late Mesoproterozoic: evidence from carbon isotope composition of paired carbonate and organic matter of the Shennongjia Group in South China[J]. Precambrian Research, 2022, 377: 106726.
DOI URL |
[36] |
MCDOUGALL I, DUNN P R, COMPSTON W, et al. Isotopic age determinations on precambrian rocks of the carpentaria region, northern territory, Australia[J]. Journal of the Geological Society of Australia, 1965, 12(1): 67-90.
DOI URL |
[37] |
TRENDALL A F. Precambrian Iron-Formations of Australia[J]. Economic Geology, 1973, 68(7): 1023-1034.
DOI URL |
[38] | FROESE E, GOETZ P A. Geology of the Sherridon Group in the vicinity of Sherridon, Manitoba[M]. Ottawa: Geological Survey of Canada, 1981. |
[39] | JARRETT A, HALL L, CARR L, et al. Source rock geochemistry of the Isa Superbasin and South Nicholson Basin, Northern Australia: baseline regional hydrocarbon prospectivity[M]. Canberra: Geoscience Australia, 2019. |
[40] | CARSON C J, KOSITCIN N, ANDERSON J R, et al. A revised Proterozoic tectono-stratigraphy of the South Nicholson region, Northern Territory, Australia: insights from SHRIMP U-Pb detrital zircon geochronology[J/OL]. Australian Journal of Earth Sciences, 2023: 1-25 [2023-10-21]. DOI: 10.1080/08120099.2023.2264355. |
[41] | ERMANOVICS M T, JONES R M. The Palapye Group, central-eastern Botswana[J]. South African Journal of Geology, 1978, 81: 61-73. |
[42] | KENDALL B, ANBAR A D, KAPPLER A, et al. The global iron cycle. Fundamentals of geobiology[M]. Hoboken: Wiley Online Library, 2012: 65-92. |
[43] |
KONHAUSER K O, PLANAVSKY N J, HARDISTY D S, et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history[J]. Earth-Science Reviews, 2017, 172: 140-177.
DOI URL |
[44] |
CONDIE K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104(1/2/3/4): 1-37.
DOI URL |
[45] |
HOLLAND H D. The oceans: a possible source of iron in iron-formations[J]. Economic Geology, 1973, 68(7): 1169-1172.
DOI URL |
[46] |
CHU N C, JOHNSON C M, BEARD B L, et al. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time[J]. Earth and Planetary Science Letters, 2006, 245(1/2): 202-217.
DOI URL |
[47] |
SEVERMANN S, JOHNSON C M, BEARD B L, et al. The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36 degrees 14' N[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 63-76.
DOI URL |
[48] |
FITZSIMMONS J N, JOHN S G, MARSAY C M, et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange[J]. Nature Geoscience, 2017, 10(3): 195-201.
DOI |
[49] | 姚通, 李厚民, 杨秀清, 等. 辽冀地区条带状铁建造地球化学特征: Ⅱ.稀土元素特征[J]. 岩石学报, 2014, 30(5): 1239-1252. |
[50] |
KUMP L R, SEYFRIED W E. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers[J]. Earth and Planetary Science Letters, 2005, 235(3): 654-662.
DOI URL |
[51] |
LI W, BEARD B L, JOHNSON C M. Biologically recycled continental iron is a major component in banded iron formations[J]. Proceedings of the National Academy of Sciences, 2015, 112(27): 8193-8198.
DOI URL |
[52] |
BEKKER A, SLACK J F, PLANAVSKY N, et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 2010, 105(3): 467-508.
DOI URL |
[53] |
KAPPLER A, PASQUERO C, KONHAUSER K, et al. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria[J]. Geology, 2005, 33: 865-868.
DOI URL |
[54] |
KONHAUSER K O, HAMADE T, RAISWELL R, et al. Could bacteria have formed the Precambrian banded iron formations?[J]. Geology, 2002, 30(12): 1079-1082.
DOI URL |
[55] |
黄柳琴, 李林鑫, 蒋宏忱. BIFs的形成及其铁氧化机制研究进展与展望[J]. 地学前缘, 2023, 30(2): 333-346.
DOI |
[56] |
POSTH N R, KONHAUSER K O, KAPPLER A. Microbiological processes in banded iron formation deposition[J]. Sedimentology, 2013, 60(7): 1733-1754.
DOI URL |
[57] |
CAIRNS-SMITH A G. Precambrian solution photochemistry, inverse segregation, and banded iron formations[J]. Nature, 1978, 276(5690): 807-808.
DOI |
[58] |
KONHAUSER K O, AMSKOLD L, LALONDE S V, et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 87-100.
DOI URL |
[59] |
RASMUSSEN B, MUHLING J R, SUVOROVA A, et al. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform[J]. Precambrian Research, 2017, 290: 49-62.
DOI URL |
[60] |
TOSCA N J, GUGGENHEIM S, PUFAHL P K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater[J]. GSA Bulletin, 2016, 128(3/4): 511-530.
DOI URL |
[61] |
ROBBINS L J, FUNK S P, FLYNN S L, et al. Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations[J]. Nature Geoscience, 2019, 12(7): 558-563.
DOI |
[62] |
PLANAVSKY N J, ASAEL D, HOFMANN A, et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event[J]. Nature Geoscience, 2014, 7(4): 283-286.
DOI |
[63] |
LALONDE S V, KONHAUSER K O. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis[J]. Proceedings of the National Academy of Sciences, 2015, 112(4): 995-1000.
DOI URL |
[64] |
DUAN Y, ANBAR A D, ARNOLD G L, et al. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6655-6668.
DOI URL |
[65] |
SIEVER R. The silica cycle in the Precambrian[J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3265-3272.
DOI URL |
[66] |
TRéGUER P, NELSON D M, VAN BENNEKOM A J, et al. The silica balance in the world ocean: a reestimate[J]. Science, 1995, 268(5209): 375-379.
PMID |
[67] | PERRY E C, LEFTICARIU L. Formation and geochemistry of Precambrian Cherts[M]//Treatise on geochemistry. Amsterdam: Elsevier, 2014: 113-139. |
[68] |
PERCAK-DENNETT E M, BEARD B L, XU H, et al. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater[J]. Geobiology, 2011, 9(3): 205-220.
DOI URL |
[69] |
MORRIS R C. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia[J]. Precambrian Research, 1993, 60(1): 243-286.
DOI URL |
[70] | FISCHER W W, KNOLL A H. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation[J]. GSA Bulletin, 2009, 121(1/2): 222-235. |
[71] |
ZEGEYE A, BONNEVILLE S, BENNING L G, et al. Green rust formation controls nutrient availability in a ferruginous water column[J]. Geology, 2012, 40(7): 599-602.
DOI URL |
[72] |
REDDY T R, ZHENG X Y, RODEN E E, et al. Silicon isotope fractionation during microbial reduction of Fe(III)-Si gels under Archean seawater conditions and implications for iron formation genesis[J]. Geochimica et Cosmochimica Acta, 2016, 190: 85-99.
DOI URL |
[73] |
ZHENG X-Y, BEARD B L, REDDY T R, et al. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 2016, 187: 102-122.
DOI URL |
[74] |
MARIN-CARBONNE J, ROBERT F, CHAUSSIDON M. The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures?[J]. Precambrian Research, 2014, 247: 223-234.
DOI URL |
[75] |
DELSTANCHE S, OPFERGELT S, CARDINAL D, et al. Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide[J]. Geochimica et Cosmochimica Acta, 2009, 73(4): 923-934.
DOI URL |
[76] |
THOMPSON K J, KENWARD P A, BAUER K W, et al. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans[J]. Science Advances, 2019, 5(11): eaav2869.
DOI URL |
[77] |
WU L L, PERCAK-DENNETT E M, BEARD B L, et al. Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe-Si coprecipitates and implications for iron isotope variations in the ancient rock record[J]. Geochimica et Cosmochimica Acta, 2012, 84: 14-28.
DOI URL |
[78] |
LANTINK M L, DAVIES J H F L, MASON P R D, et al. Climate control on banded iron formations linked to orbital eccentricity[J]. Nature Geoscience, 2019, 12(5): 369-374.
DOI PMID |
[79] |
LI Y L. Micro- and nanobands in late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions[J]. Earth and Planetary Science Letters, 2014, 391: 160-170.
DOI URL |
[80] |
SUN Z, ZHOU H, GLASBY G P, et al. Mineralogical characterization and formation of Fe-Si oxyhydroxide deposits from modern seafloor hydrothermal vents[J]. American Mineralogist, 2013, 98(1): 85-97.
DOI URL |
[81] | 刘洪波. 鞍-本地区条带状铁建造中硅铁矿物分异反馈及生长动力学演化[J]. 矿产与地质, 1996, 10(1): 1-5. |
[82] |
BAU M, DULSKI P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1): 37-55.
DOI URL |
[83] |
HAMADE T, KONHAUSER K O, RAISWELL R, et al. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations[J]. Geology, 2003, 31(1): 35-38.
DOI URL |
[84] |
LI Y, HOU K, WAN D, et al. Precambrian banded iron formations in the North China Craton: silicon and oxygen isotopes and genetic implications[J]. Ore Geology Reviews, 2014, 57: 299-307.
DOI URL |
[85] |
STEINHOEFEL G, HORN I, VON BLANCKENBURG F. Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation[J]. Geochimica et Cosmochimica Acta, 2009, 73(18): 5343-5360.
DOI URL |
[86] |
WANG C, WU H, LI W, et al. Changes of Ge/Si, REE+Y and SmNd isotopes in alternating Fe- and Si-rich mesobands reveal source heterogeneity of the -2.54 Ga Sijiaying banded iron formation in Eastern Hebei, China[J]. Ore Geology Reviews, 2017, 80: 363-376.
DOI URL |
[87] |
KATSUTA N, SHIMIZU I, HELMSTAEDT H, et al. Major element distribution in Archean banded iron formation (BIF): influence of metamorphic differentiation[J]. Journal of Metamorphic Geology, 2012, 30(5): 457-472.
DOI URL |
[88] | 代堰锫, 朱玉娣, 张连昌, 等. 国内外前寒武纪条带状铁建造研究现状[J]. 地质论评, 2016, 62(3): 735-757. |
[89] | 李厚民, 李延河, 李立兴, 等. 沉积变质型铁矿成矿条件及富铁矿形成机制[J]. 地质学报, 2022, 96(9): 3211-3233. |
[90] |
WANG Y, XU H, MERINO E, et al. Generation of banded iron formations by internal dynamics and leaching of oceanic crust[J]. Nature Geoscience, 2009, 2(11): 781-784.
DOI |
[91] |
DREVER J I. Geochemical model for the origin of Precambrian banded iron formations[J]. GSA Bulletin, 1974, 85(7): 1099-1106.
DOI URL |
[92] |
GARRELS R M. A model for the deposition of the microbanded Precambrian iron formations[J]. American Journal of Science, 1987, 287(2): 81-106.
DOI URL |
[93] | MILLER A R, READING K L. Iron - formation, evaporite, and possible metallogenetic implications for the Lower Proterozoic Hurwitz Group, District of Keewatin, Northwest Territories[C]// Canada-Northwest Territories Mineral Initiatives, 1991-1996. Ottawa: Geological Survey of Canada, 1993. |
[94] |
POSTH N R, HEGLER F, KONHAUSER K O, et al. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans[J]. Nature Geoscience, 2008, 1(10): 703-708.
DOI |
[95] |
SCHAD M, HALAMA M, BISHOP B, et al. Temperature fluctuations in the Archean ocean as trigger for varve-like deposition of iron and silica minerals in banded iron formations[J]. Geochimica et Cosmochimica Acta, 2019, 265: 386-412.
DOI URL |
[96] |
CLOUD P. Paleoecological significance of the banded Iron-formation[J]. Economic Geology, 1973, 68(7): 1135-1143.
DOI URL |
[97] |
HASHIZUME K, PINTI D L, ORBERGER B, et al. A biological switch at the ocean surface as a cause of laminations in a Precambrian iron formation[J]. Earth and Planetary Science Letters, 2016, 446: 27-36.
DOI URL |
[98] | 李陛, 吴文芳, 李金华, 等. 温度和电子传递体AQDS对铁还原细菌Shewanella putrefaciens CN32矿化产物的影响[J]. 地球物理学报, 2011, 54(10): 2631-2638. |
[99] |
LASCELLES D F. Plate tectonics caused the demise of banded iron formations[J]. Applied Earth Science, 2013, 122(4): 230-241.
DOI URL |
[100] |
HUMPHRIS S E, KLEIN F. Progress in deciphering the controls on the geochemistry of fluids in seafloor hydrothermal systems[J]. Annual Review of Marine Science, 2018, 10(1): 315-343.
DOI URL |
[101] |
JAVAUX E J, LEPOT K. The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth's middle-age[J]. Earth-Science Reviews, 2018, 176: 68-86.
DOI URL |
[102] | 尹磊明, 袁训来, 边立曾, 等. 东秦岭北坡中元古代晚期微体生物群: 一个早期生命的新窗口[J]. 古生物学报, 2004, 43(1): 1-13. |
[1] | 徐大良, 邓新, 彭练红, 田洋, 金巍, 金鑫镖. 大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J]. 地学前缘, 2023, 30(4): 299-316. |
[2] | 黄柳琴, 李林鑫, 蒋宏忱. BIFs的形成及其铁氧化机制研究进展与展望[J]. 地学前缘, 2023, 30(2): 333-346. |
[3] | 朱东栋, Jill N.SUTTON, Aude LEYNAERT, Paul J.TREGUER, 刘素美. 全球海洋硅循环及研究中面临的主要挑战[J]. 地学前缘, 2022, 29(5): 47-58. |
[4] | 张嘉玮, 陈建书, 吴滔, 叶太平, 陈明华, 代雅然, 邓小杰, 牟军. 湘黔桂新元古代拉伸纪晚期地层年代格架对比及关键地质事件初探[J]. 地学前缘, 2020, 27(4): 1-16. |
[5] | 胡瑞忠, 陈伟, 毕献武, 付山岭, 尹润生, 肖加飞. 扬子克拉通前寒武纪基底对中生代大面积低温成矿的制约[J]. 地学前缘, 2020, 27(2): 137-150. |
[6] | 李三忠,索艳慧,刘博,刘永江,李玺瑶,赵淑娟,朱俊江,王光增,张国伟. 微板块构造理论:全球洋内与陆缘微地块研究的启示(附对该文的审稿意见)[J]. 地学前缘, 2018, 25(5): 323-356. |
[7] | 陆松年,郝国杰,相振群. 前寒武纪重大地质事件[J]. 地学前缘, 2016, 23(6): 140-155. |
[8] | 王伟,刘树文,白翔,郭荣荣. 前寒武纪地球动力学(Ⅷ):华北克拉通太古宙末期地壳生长方式[J]. 地学前缘, 2015, 22(6): 109-124. |
[9] | 李三忠,李玺瑶,戴黎明. 前寒武纪地球动力学(Ⅵ):华北克拉通形成[J]. 地学前缘, 2015, 22(6): 77-96. |
[10] | 李三忠,郭玲莉,戴黎明. 前寒武纪地球动力学(Ⅴ):板块构造起源[J]. 地学前缘, 2015, 22(6): 65-76. |
[11] | 李三忠,戴黎明,张臻. 前寒武纪地球动力学(Ⅳ):前板块体制[J]. 地学前缘, 2015, 22(6): 46-64. |
[12] | 李三忠,戴黎明,张臻. 前寒武纪地球动力学(Ⅲ):前寒武纪地质基本特征[J]. 地学前缘, 2015, 22(6): 27-45. |
[13] | 李三忠,张臻,孙文军,戴黎明,张国伟. 前寒武纪地球动力学(Ⅰ):从宇宙环境到原始地球[J]. 地学前缘, 2015, 22(6): 1-9. |
[14] | 周肖贝, 李江海, 王洪浩, 李文山, 程雅琳. 塔里木盆地南华纪—震旦纪盆地类型及早期成盆构造背景[J]. 地学前缘, 2015, 22(3): 290-298. |
[15] | 苏文博. 2012年全球前寒武纪新年表与中国中元古代年代地层学研究[J]. 地学前缘, 2014, 21(2): 119-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||