地学前缘 ›› 2021, Vol. 28 ›› Issue (6): 205-226.DOI: 10.13745/j.esf.sf.2021.11.12
所属专题: 印度-欧亚大陆碰撞及其远程效应
• “印度-欧亚大陆碰撞及其远程效应”专栏之二 • 上一篇 下一篇
李典1, 王根厚2,*, 刘正勇1, 李鹏胜1, 冯翼鹏2, 唐宇2, 李超3, 李阳1
收稿日期:
2021-10-31
修回日期:
2021-11-10
出版日期:
2021-11-25
发布日期:
2021-11-25
通信作者:
*王根厚(1963—),男,教授,博士生导师,从事构造地质学和区域构造地质研究。E-mail:wgh@cugb.edu.cn
作者简介:
李 典(1985—),男,博士,讲师,主要从事构造地质学研究。E-mail:lidian19@cdut.edu.cn
基金资助:
LI Dian1, WANG Genhou2,*, LIU Zhengyong1, LI Pengsheng1, FENG Yipeng2, TANG Yu2, LI Chao3, LI Yang1
Received:
2021-10-31
Revised:
2021-11-10
Online:
2021-11-25
Published:
2021-11-25
摘要: 大洋岩石圈俯冲增生过程中可能伴随着复杂的深部板片运动过程。高压变质岩无疑是记录这些深部过程的良好载体。最近的研究提出,在特定情况下,双向俯冲中占主导的俯冲板块拖曳另一侧板块发生反向运动,从而短板片可能被另一侧长板片拖出。该研究提示我们关注俯冲增生过程中这种可能的“不正常”的板片运动方式,从而客观而全面地剖析碰撞造山带。现有高压变质岩折返模式中,除了俯冲隧道流模式,其余模式均强调单次快速折返。然而,俯冲反向运动导致的折返过程有所不同:对单个高压变质岩来说仍是快速折返,但是对整体高压变质岩带来说,整个俯冲反向期间必然都存在高压变质岩折返,从而形成较长的折返过程持续时间。对上地壳层次的折返相关构造变形的研究有助于揭示上述过程。
中图分类号:
李典, 王根厚, 刘正勇, 李鹏胜, 冯翼鹏, 唐宇, 李超, 李阳. 西藏南羌塘增生杂岩中俯冲反向驱动高压变质岩折返:来自猫耳山大型拆离断层的启示[J]. 地学前缘, 2021, 28(6): 205-226.
LI Dian, WANG Genhou, LIU Zhengyong, LI Pengsheng, FENG Yipeng, TANG Yu, LI Chao, LI Yang. Subduction reversal in the accretion complex drives the exhumation of deep subducted mélange in southern Qiangtang, Tibet: Insights from the Mao'ershan detachment fault[J]. Earth Science Frontiers, 2021, 28(6): 205-226.
[1] ERDMAN M E, LEE C T.Oceanic- and continental-type metamorphic terranes: occurrence and exhumation mechanisms[J]. Earth-Science Reviews, 2014, 139: 33-46. [2] PLATT J P.Exhumation of high-pressure rocks: a review of concepts and processes[J]. Terra Nova, 2010, 5(2): 119-133. [3] HACKER B R, GERYA T V.Paradigms, new and old, for ultrahigh-pressure tectonism[J]. Tectonophysics, 2013, 603: 79-88. [4] BALDWIN S L, MONTELEONE B D, WEBB L E, et al.Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea[J]. Nature, 2004, 431(7006): 263-267. [5] RUBATTO D, HERMANN J.Exhumation as fast as subduction?[J]. Geology, 2001, 29(1): 3-6. [6] AGARD P, YAMATO P, JOLIVET L, et al.Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms[J]. Earth-Science Reviews, 2009, 92(1/2): 53-79. [7] BEAUMONT C, JAMIESON R A, BUTLER J P, et al.Crustal structure: a key constraint on the mechanism of ultra-high-pressure rock exhumation[J]. Earth and Planetary Science Letters, 2009, 287(1/2): 116-129. [8] CHOPIN C.Ultrahigh-pressure metamorphism: tracing continental crust into the mantle[J]. Earth and Planetary Science Letters, 2003, 212(1/2): 1-14. [9] ERNST W G, MARUYAMA S, WALLIS S.Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(18): 9532-9537. [10] WARREN C J, BEAUMONT C, JAMIESON R A.Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision[J]. Earth and Planetary Science Letters, 2008, 267(1/2): 129-145. [11] LITTLE T A, HACKER B R, GORDON S M, et al.Diapiric exhumation of Earth's youngest (UHP) eclogites in the gneiss domes of the D'Entrecasteaux Islands, Papua New Guinea[J]. Tectonophysics, 2011, 510(1/2): 39-68. [12] MARTINEZ F, GOODLIFFE A M, TAYLOR B.Metamorphic core complex formation by density inversion and lower-crust extrusion[J]. Nature, 2001, 411(6840): 930-934. [13] BEAUMONT C, JAMIESON R A, NGUYEN M H, et al.Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6865): 738-742. [14] CLOOS M.Flow melanges: numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California[J]. Geological Society of America Bulletin, 1982, 93(4): 330-345. [15] GERYA T V, STOECKHERT B, PERCHUK A L.Exhumation of high-pressure metamorphic rocks in a subduction channel[J]. Tectonics, 2002, 21(6): 1-19. [16] LIAO J, MALUSA M G, ZHAO L, et al.Divergent plate motion drives rapid exhumation of (ultra) high pressure rocks[J]. Earth and Planetary Science Letters, 2018, 491: 67-80. [17] RING U, GLODNY J, WILL T, et al.The Hellenic subduction system: high-pressure metamorphism, exhumation, normal faulting, and large-scale extension[J]. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 45-76. [18] SHREVE R L, CLOOS M.Dynamics of sediment subduction, melange formation, and prism accretion[J]. Journal of Geophysical Research Solid Earth, 1986, 91(B10): 10229-10245. [19] ANDERSEN T B, JAMTVEIT B, DEWEY J F, et al.Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides[J]. Terra Nova, 1991, 3(3): 303-310. [20] BRUECKNER H K, ROERMUND H L M V. Dunk tectonics: a multiple subduction/eduction model for the evolution of the Scandinavian Caledonides[J]. Tectonics, 2004, 23(2): 1-20. [21] PETERSEN K D, BUCK W R.Eduction, extension, and exhumation of ultrahigh-pressure rocks in metamorphic core complexes due to subduction initiation[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2564-2581. [22] DURETZ T, GERYA T V, KAUS B, et al.Thermomechanical modeling of slab eduction[J]. Journal of Geophysical Research Atmospheres, 2012, 117: 1-17. [23] CHEMENDA A I, MATTAUER M, BOKUN A N.Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks: new modelling and field data from Oman[J]. Earth and Planetary Science Letters, 1996, 143(1/4): 173-182. [24] WEBB L E, BALDWIN S L, LITTLE T A, et al.Can microplate rotation drive subduction inversion[J]. Geology, 2008, 36(10): 823-826. [25] DURETZ T, GERYA T V, MAY D A.Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics, 2011, 502(1/2): 244-256. [26] 张修政, 董永胜, 王强, 等. 青藏高原羌塘中部高压变质带的研究进展及存在问题[J]. 地质通报, 2018, 37(8): 1406-1416. [27] LI D, WANG G H, BONS P D, et al.Subduction reversal in a divergent double subduction zone drives the exhumation of southern Qiangtang blueschist-bearing mélange, central Tibet[J]. Tectonics, 2020, 39(4): 1-24. [28] JIN X, ZHANG Y X, ZHOU X Y, et al.Protoliths and tectonic implications of the newly discovered Triassic Baqing eclogites, central Tibet: evidence from geochemistry, Sr Nd isotopes and geochronology[J]. Gondwana Research, 2019, 69: 144-162. [29] ZHANG Y X, XIN J, ZHANG K J, et al.Newly discovered Late Triassic Baqing eclogite in central Tibet indicates an anticlockwise west-east Qiangtang collision[J]. Scientific Reports, 2018, 8(1): 1-12. [30] PULLEN A, KAPP P, GEHRELS G E, et al.Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 2008, 36(5): 351-354. [31] TANG X C, ZHANG K J.Lawsonite- and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China: mineralogy, geochemistry, geochronology, and tectonic implications[J]. International Geology Review, 2014, 56(2): 150-166. [32] 邓希光, 丁林, 刘小汉, 等. 青藏高原羌塘中部冈玛日地区蓝闪石片岩及其40Ar/39Ar年代学[J]. 科学通报, 2000, 45(21): 2322-2326. [33] KAPP P, YIN A, MANNING C E, et al.Tectonic evolution of the Early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 2003, 22(4): 1-17. [34] XIAO L, WANG G, YUAN G, et al.Structural sequence and geochronology of the Qomo Ri accretionary complex, Central Qiangtang, Tibet: implications for the Late Triassic subduction of the Paleo-Tethys Ocean[J]. Gondwana Research, 2012, 22(2): 470-481. [35] 李才, 翟庆国, 陈文, 等. 青藏高原羌塘中部榴辉岩Ar-Ar定年[J]. 岩石学报, 2006(12): 2843-2849. [36] 翟庆国, 李才, 王军, 等. 藏北羌塘地区基性岩墙群锆石SHRIMP定年及Hf同位素特征[J]. 科学通报, 2009, 54(21): 3331-3337. [37] 王泉, 王根厚, 方子璇, 等. 西藏羌塘中部亚丹高压变质岩年代学、地球化学特征及其构造意义[J]. 岩石学报, 2019, 35(3): 775-798. [38] 郑艺龙. 藏北羌塘蓝岭地区蓝片岩折返机制与演化[D]. 北京: 中国地质大学(北京), 2012. [39] 郑艺龙. 西藏羌塘玛依岗日地区早古生代岩块地质特征及大地构造意义[D]. 北京: 中国地质大学(北京), 2017. [40] 王根厚, 贾建称, 万永平, 等. 藏东巴青县北部酉西岩组构造片理形成及构造意义[J]. 地学前缘, 2006, 13(4): 180-187. [41] ZHANG X Z, DONG Y S, WANG Q, et al.Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet-staurolite-muscovite schists in central Qiangtang, Tibet[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(1): 266-279. [42] KAPP P, YIN A, MANNING C E, et al.Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28(1): 19-22. [43] LIANG X, WANG G, YANG B, et al.Stepwise exhumation of the Triassic Lanling high-pressure metamorphic belt in Central Qiangtang, Tibet: insights from a coupled study of metamorphism, deformation, and geochronology[J]. Tectonics, 2017, 36(3/4): 652-670. [44] ZHANG K J, ZHANG Y X, LI B, et al.The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: evidence from geochemical comparison with the Jinsa suture[J]. Geology, 2006, 34(6): 493-496. [45] WU H, LI C, CHEN J, et al.Late Triassic tectonic framework and evolution of central Qiangtang, Tibet, SW China[J]. Lithosphere, 2016, 8(2): 141-149. [46] ZHAO Z, BONS P D, WANG G, et al.Tectonic evolution and high-pressure rock exhumation in the Qiangtang terrane, central Tibet[J]. Solid Earth, 2015, 6(2): 457-473. [47] SENGOR A M C. A new model for the late Palaeozoic-Mesozoic tectonic evolution of Iran and implications for Oman[J]. Geology and Tectonics of the Oman Region, 1990, 49(1): 797-831. [48] ZHANG K J, XIA B D, WANG G M, et al.Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 2004, 116(9): 1202. [49] 李才, 翟刚毅, 王立全, 等. 认识青藏高原的重要窗口: 羌塘地区近年来研究进展评述(代序)[J]. 地质通报, 2009, 28(9): 1169-1177. [50] WU Y W, LI C, XU M J, et al.Petrology, geochemistry, and geochronology of mafic rocks from the Taoxinghu Devonian ophiolite, LongmuCo-Shuanghu-Lancang suture zone, northern Tibet: evidence for an intra-oceanic arc-basin system[J]. International Geology Review, 2016, 58(4): 441-454. [51] ZHAI Q G, CAI L, HUANG X P.The fragment of Paleo-Tethys ophiolite from central Qiangtang, Tibet: geochemical evidence of metabasites in Guoganjianian[J]. Science in China, 2007, 50(9): 1302-1309. [52] ZHAI Q G, JAHN B M, WANG J, et al.Oldest paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. Geological Society of America Bulletin, 2016, 128(3/4): 355-373. [53] ZHAI Q G, JAHN B M, WANG J, et al. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics[J]. Lithos, 2013, 168/169: 186-199. [54] ZHAI Q G, LI C, HUANG X P.Geochemistry of Permian basalt in the Jiaomuri area, central Qiangtang, Tibet, China, and its tectonic significance[J]. Geological Bulletin of China, 2006, 25(12): 1419-1427. [55] 李才, 翟庆国, 董永胜, 等. 冈瓦纳大陆北缘早期的洋壳信息;来自青藏高原羌塘中部早古生代蛇绿岩的依据[J]. 地质通报, 2008, 27(10): 29-36. [56] 李才, 董永胜, 翟庆国, 等. 青藏高原羌塘早古生代蛇绿岩;堆晶辉长岩的锆石SHRIMP定年及其意义[J]. 岩石学报, 2008(1): 31-36. [57] 王立全, 潘桂棠, 李才, 等. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄: 兼论原-古特提斯洋的演化[J]. 地质通报, 2008(12): 105-116. [58] ZHAI Q G, CAI L, HUANG X P.The fragment of Paleo-Tethys ophiolite from central Qiangtang, Tibet: geochemical evidence of metabasites in Guoganjianian[J]. Science in China, 2007, 50(9): 1302-1309. [59] 翟庆国, 李才, 黄小鹏. 西藏羌塘中部角木日地区二叠纪玄武岩的地球化学特征及其构造意义[J]. 地质通报, 2006, 25(12): 1419-1427. [60] 翟庆国, 王军, 李才, 等. 青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征[J]. 中国科学: 地球科学, 2010, 40(5): 565-573. [61] 翟庆国, 李才. 藏北羌塘菊花山那底岗日组火山岩锆石SHRIMP定年及其意义[J]. 地质学报, 2007(6): 795-800. [62] 王根厚, 韩芳林, 杨运军, 等. 藏北羌塘中部晚古生代增生杂岩的发现及其地质意义[J]. 地质通报, 2009(9): 1181-1187. [63] YIN A, HARRISON T M.Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. [64] KAPP P, DECELLES P G.Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254. [65] 李才. 龙木错—双湖—澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J]. 吉林大学学报(地球科学版), 1987(2): 155-166. [66] FAN J J, LI C, WANG M, et al.Features, provenance, and tectonic significance of Carboniferous-Permian glacial marine diamictites in the Southern Qiangtang-Baoshan block, Tibetan Plateau[J]. Gondwana Research, 2015, 28(4): 1530-1542. [67] ZHANG Y C, SHI G R, SHEN S Z.A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai-Tibet Plateau[J]. Gondwana Research, 2013, 24(1): 55-76. [68] 梁定益, 聂泽同, 郭铁鹰, 等. 西藏阿里喀喇昆仑南部的冈瓦纳-特提斯相石炭二叠系[J]. 地球科学: 中国地质大学学报, 1983(1): 9-27. [69] 李才, 谢尧武, 蒋光武, 等. 藏东吉塘地区冈瓦纳相冰海杂砾岩的特征及其意义[J]. 地质通报, 2008(10): 1654-1658. [70] 陈寿铭, 程立人, 张以春. 西藏羌塘北部地区晚二叠世地层再研究[J]. 吉林大学学报(地球科学版), 2006, 36(增刊1): 6-9. [71] 程立人, 陈寿铭, 张以春, 等. 西藏羌北地区石炭纪地层的发现[J]. 地学前缘, 2006, 13(4): 240-243. [72] 武桂春, 姚建新, 纪占胜. 西藏北羌塘中部地区晚石炭世的类动物群蜓[J]. 地质通报, 2009, 28(9): 1276-1280. [73] 李才. 青藏高原龙木错—双湖—澜沧江板块缝合带研究二十年[J]. 地质论评, 2008, 54(1): 105-119. [74] YIN A, KAPP P A, MURPHY M A, et al.Significant late Neogene east-west extension in northern Tibet[J]. Geology, 1999, 27(9): 787-790. [75] PULLEN A, KAPP P, GEHRELS G E, et al.Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123(3/4): 585-600. [76] PULLEN A, KAPP P.Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: insights from the Qiangtang metamorphic belt, central Tibet[J]. Geological Society of America Special Papers, 2014, 507: 71-87. [77] ZHAO Z, BONS P D, WANG G, et al.Origin and pre-Cenozoic evolution of the south Qiangtang basement, Central Tibet[J]. Tectonophysics, 2014, 623(1): 52-66. [78] ZHANG X Z, DONG Y S, WANG Q, et al.Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet[J]. Tectonics, 2016, 35(7/8): 1670-1686. [79] ZHANG X Z, DONG Y S, LI C, et al.Tectonic setting and petrogenesis mechanism of Late Triassic magmatism in Central Qiangtang, Tibetan Plateau: take the Xiangtaohu pluton in the Hongjishan region as an example[J]. Acta Petrologica Sinica, 2014, 30(2): 547-564. [80] KAPP P, DECELLES P G, GEHRELS G E, et al.Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-932. [81] HE H, LI Y, WANG C, et al. Late Cretaceous (ca. 95 Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: petrogenetic and tectonic implications[J]. Lithos, 2018, 302/303: 389-404. [82] HU Y, LIU Z B, WANG G, et al.Study of molasse within the middle segment of the Bangong-Nujiang suture zone, central Tibet: constraints of ocean-continent transform[J]. Geological Journal, 2020, 55(10): 6625-6641. [83] LI Y, HE H, WANG C, et al.Early Cretaceous (ca. 100 Ma) magmatism in the southern Qiangtang subterrane, central Tibet: Product of slab break-off?[J]. International Journal of Earth Sciences, 2017, 106(4): 1289-1310. [84] LI Y, HE J, WANG C, et al.Cretaceous volcanic rocks in south Qiangtang Terrane: products of northward subduction of the Bangong-Nujiang Ocean?[J]. Journal of Asian Earth Sciences, 2015, 104: 69-83. [85] ZHAO Z, BONS P D, STüBNER K, et al. Early Cretaceous exhumation of the Qiangtang terrane during collision with the Lhasa terrane, central Tibet[J]. Terra Nova, 2017, 29(6): 382-391. [86] BEHYARI M, SHAHBAZI M.Strain and vorticity analysis in the Zagros suture zone (W Iran): implications for Neo-Tethys post-collision events[J]. Journal of Structural Geology, 2019, 126: 198-209. [87] SOLEIMANI M, FAGHIH A, KUSKY T. Mesozoic compressional to extensional tectonics in the Central East Iranian microcontinent: evidence from the Boneh Shurow metamorphic core complex[J]. Journal of the Geological Society, 2021. https: ∥doi.org/10.1144/jgs2020-123. [88] SIVAND S M, FAGHIH A, KESHAVARZ S, et al.Characterizing syn-convergent extension along the Neybaz-Chatak detachment shear zone, Central Iran: insights from microstructures, quartz petrofabrics and flow vorticity analysis[J]. Journal of Structural Geology, 2021, 143: 104270. https: ∥doi.org/10.1016/j.jsg.2020.104270. [89] RAMSAY J. G.Folding and fracturing of rocks[M]. New York: McGraw Hill Book Company, 1967: 1-568. [90] MOOKERJEE, MATTY, FORTESCUE, et al. Quantifying thinning and extrusion associated with an oblique subduction zone: an example from the Rosy Finch Shear Zone[J]. Tectonophysics, 2016, 693(Part B): 290-303. [91] MOOKERJEE M, NICKLEACH S.Three-dimensional strain analysis using Mathematica[J]. Journal of Structural Geology, 2011, 33(10): 1467-1476. [92] TIKOFF B, FOSSEN H.The limitations of three-dimensional kinematic vorticity analysis[J]. Journal of Structural Geology, 1995, 17(12): 1771-1784. [93] SIMPSON C, DE PAOR DG.Strain and kinematic analysis in general shear zones[J]. Journal of Structural Geology, 1993, 15(1): 1-20. [94] MEANS W D, HOBBS B E, LISTER G S, et al.Vorticity and non-coaxiality in progressive deformations[J]. Journal of Structural Geology, 1980, 2(3): 371-378. [95] LAW R D, SEARLE M P, SIMPSON R L.Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet[J]. Journal of the Geological Society, 2004, 161(2): 305-320. [96] FOSSEN H, TIKOFF B.Forward modeling of non-steady-state deformations and the ‘minimum strain path’[J]. Journal of Structural Geology, 1997, 19(7): 987-996. [97] FOSSEN H, TIKOFF B.Forward modeling of non-steady-state deformations and the ‘minimum strain path’: reply[J]. Journal of Structural Geology, 1998, 20(7): 979-981. [98] JIANG D, Forward modeling of non-steady-state deformations and the ‘minimum strain path’: discussion[J]. Journal of Structural Geology, 1998, 20(7): 975-977. [99] ZHANG J J, ZHENG Y D.Kinematic vorticity, polar mohr circle and their application in quantitative analysis[J]. Journal of Geomechanics, 1995, 1: 56-64. [100] KRUHL J H, NEGA M, MILLA H E.The fractal shape of grain boundary sutures: reality, model and application as a geothermometer[C]∥Book of Abstracts, 2nd International Conference on Fractal and Dynamic Systems in Geosciences. Basel: Birkhäuser, 1995, 84: 31-32. [101] KRUHL J H, NEGA M.The fractal shape of sutured quartz grain boundaries: application as a geothermometer[J]. Geologische Rundschau, 1996, 85(1): 38-43. [102] TAKAHASHI M, NAGAHAMA H, MASUDA T, et al.Fractal analysis of experimentally, dynamically recrystallized quartz grains and its possible application as a strain rate meter[J]. Journal of Structural Geology, 1998, 20(2/3): 269-275. [103] KRUHL J H.Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer[J]. Journal of Metamorphic Geology, 2010, 14(5): 581-589. [104] TAKESHITA T.Estimate of the physical conditions for deformation based on c-axis fabric transitions in naturally deformed quarzite[J]. Journal of the Geological Society of Japan, 1996, 102(3): 211-222. [105] PASSCHIER C W, TROUW R.Microtectonics[M]. Berlin: Springer-Verlag, 1996: 289. [106] STIPP M, STÜNITZ H, HEILBRONNER R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 ℃[J]. Journal of Structural Geology, 2002, 24(12): 1861-1884. [107] PASSCHIER C W, TROUW R.Microtectonics[M]. Berlin: Springer Science & Business Media, 2005: 1-366. [108] KURZ W, HANDLER R, BERTOLDI C.Tracing the exhumation of the eclogite zone (Tauern Window, Eastern Alps) by 40Ar/39Ar dating of white mica in eclogites[J]. Swiss Journal of Geosciences, 2008, 101(1): 191-206. [109] LISTER G S, BALDWIN S L.Modelling the effect of arbitrary PTt histories on argon diffusion in minerals using the MacArgon program for the Apple Macintosh[J]. Tectonophysics, 1996, 253(1/2): 83-109. [110] STUART F M.The exhumation history of orogenic belts from 40Ar/39Ar ages of detrital micas[J]. Mineralogical Magazine, 2002, 66(1): 121-135. [111] JIN X, ZHANG Y X, ZHOU X Y, et al.Protoliths and tectonic implications of the newly discovered Triassic Baqing eclogites, central Tibet: evidence from geochemistry, Sr-Nd isotopes and geochronology[J]. Gondwana Research, 2019, 69: 144-162. [112] ZHANG Y X, JIN X, ZHANG K J, et al.Newly discovered Late Triassic Baqing eclogite in central Tibet indicates an anticlockwise West-East Qiangtang collision[J]. Scientific Reports, 2018, 8(1): 1-12. [113] ZHAI Q G, ZHANG R Y, JAHN B M, et al.Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic PT path[J]. Lithos, 2011, 125: 173-189. [114] 张修政, 董永胜, 李才, 等. 青藏高原羌塘中部不同时代榴辉岩的识别及其意义;来自榴辉岩及其围岩40Ar/39Ar年代学的证据[J]. 地质通报, 2010, 29(12): 1815-1824. [115] 董永胜, 李才, 施建荣, 等. 羌塘中部高压变质带的退变质作用及其构造侵位[J]. 岩石学报, 2009, 25(9): 2303-2309. [116] PULLEN A, KAPP P, GEHRELS G E, et al.Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123(3/4): 585-600. [117] ZHAI Q, JAHN B, LI X, et al.Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet: a case of metamorphic zircon with magmatic geochemical features[J]. International Journal of Earth Sciences, 2017, 106(4): 1239-1255. [118] TANG X C, ZHANG K J.Lawsonite- and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China: mineralogy, geochemistry, geochronology, and tectonic implications[J]. International Geology Review, 2014, 56(2): 150-166. [119] ZHANG X Z, DONG Y S, WANG Q, et al.Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet-staurolite-muscovite schists in central Qiangtang, Tibet[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(1): 266-279. [120] 朱同兴, 张启跃, 冯心涛, 等. 西藏羌塘中部才多茶卡蓝闪石40Ar/39Ar 年代学及地质意义[J]. 地质学报, 2010, 84(10): 1448-1456. [121] 李才. 西藏羌塘中部蓝片岩青铝闪石40Ar/39Ar定年及其地质意义[J]. 科学通报, 1997(4): 70-74. [122] JACOBSON C E, OYARZABAL F R, HAXEL G B.Subduction and exhumation of the Pelona-Orocopia-Rand schists, southern California[J]. Geology, 1996, 24(6): 547-550. [123] WANG Y, WANG Q, DENG J, et al.Triassic arc mafic magmatism in North Qiangtang: implications for tectonic reconstruction and mineral exploration[J]. Gondwana Research, 2020, 82: 337-353. [124] YANG T N, ZHANG H R, LIU Y X, et al.Permo-Triassic arc magmatism in central Tibet: evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry[J]. Chemical Geology, 2011, 284(3/4): 270-282. [125] LIANG X, SUN X, WANG G, et al. Sedimentary evolution and provenance of the late Permian-middle Triassic Raggyorcaka Deposits in North Qiangtang (Tibet, Western China): evidence for a forearc basin of the Longmu Co-Shuanghu Tethys Ocean[J]. Tectonics, 2020, 39(1): e2019TC005589. [126] 李才, 黄小鹏, 翟庆国, 等. 龙木错—双湖—吉塘板块缝合带与青藏高原冈瓦纳北界[J]. 地学前缘, 2006, 13(4): 136-147. [127] ZHANG Y, SHEN S, SHI G R, et al.Tectonic evolution of the Qiangtang Block, northern Tibet during the Late Cisuralian (Late Early Permian): evidence from fusuline fossil records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350: 139-148. [128] DAN W, WANG Q, WHITE W M, et al.Rapid formation of eclogites during a nearly closed ocean: revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau[J]. Chemical Geology, 2018, 477: 112-122. [129] GANNE J, BERTRAND J M, FUDRAL S.Fold interference pattern at the top of basement domes and apparent vertical extrusion of HP rocks (Ambin and South Vanoise massifs, Western Alps)[J]. Journal of Structural Geology, 2005, 27(3): 553-570. [130] OSOZAWA S, WAKABAYASHI J.Exhumation of Triassic HP-LT rocks by upright extrusional domes and overlying detachment faults, Ishigaki-jima, Ryukyu islands[J]. Journal of Asian Earth Sciences, 2012, 59: 70-84. [131] BRUN J P, FACCENNA C.Exhumation of high-pressure rocks driven by slab rollback[J]. Earth and Planetary Science Letters, 2008, 272(1): 1-7. [132] ZHAO Z F, ZHENG Y F, Zhang J, et al.Syn-exhumation magmatism during continental collision: evidence from alkaline intrusives of Triassic age in the Sulu orogen[J]. Chemical Geology, 2012, 328: 70-88. [133] FAURE M, LIN W, SCHARER U, et al.Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China)[J]. Lithos, 2003, 70(3): 213-241. [134] MALUSà M G, FACCENNA C, GARZANTI E, et al.Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps)[J]. Earth and Planetary Science Letters, 2011, 310(1/2): 21-32. |
[1] | 成秋明. 洋中脊动力学与俯冲带地震-岩浆-成矿事件远程效应[J]. 地学前缘, 2024, 31(1): 1-14. |
[2] | 贾承造, 陈竹新, 雷永良, 王丽宁, 任荣, 苏楠, 杨庚. 中国中西部褶皱冲断带构造变形机制与结构模型[J]. 地学前缘, 2022, 29(6): 156-174. |
[3] | 李典, 王根厚, 刘正勇, 李鹏胜, 冯翼鹏, 唐宇, 李超, 李阳. 西藏南羌塘晚三叠世陆缘俯冲增生造山带的褶皱-冲断与增生杂岩双层结构厘定[J]. 地学前缘, 2022, 29(4): 231-248. |
[4] | 郑媛媛,张若愚,甘浩男,李弘珂,蒋浩,张雎易,刘俊来. 中下部地壳拆离断层带演化中的褶皱作用:以辽南变质核杂岩为例 [J]. 地学前缘, 2019, 26(2): 58-71. |
[5] | 杨文心,颜丹平,邱亮,陈峰,木红旭,汪新文. 八渡复式背斜中—新生代变形序列及其对南盘江盆地形成演化的意义[J]. 地学前缘, 2018, 25(1): 33-46. |
[6] | 覃小丽,李荣西,杨玲,董树文,何为,杨清宇. 大巴山陆内造山带高压古流体及其运移动力学机制研究[J]. 地学前缘, 2017, 24(2): 123-129. |
[7] | 汤家富,侯明金. 大别山及邻区若干重要基础地质问题的再认识:再论大别造山带非板块碰撞造山过程[J]. 地学前缘, 2016, 23(4): 1-21. |
[8] | 李加好, 宋传中, 任升莲, 涂文传, 张欢, 张浩然. 秦岭商丹断裂带的构造样式与变形分析[J]. 地学前缘, 2010, 17(4): 197-205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||