地学前缘 ›› 2021, Vol. 28 ›› Issue (3): 271-294.DOI: 10.13745/j.esf.sf.2021.1.30
秦克章1,2,3(), 赵俊兴1,2, 范宏瑞1,2,3, 唐冬梅1,2, 李光明1,2,3, 余可龙1,2,3, 曹明坚1,2, 苏本勋1,2,3
收稿日期:
2021-04-12
修回日期:
2021-04-25
出版日期:
2021-05-20
发布日期:
2021-05-23
作者简介:
秦克章(1964—),男,博士,研究员,从事矿床学与成矿预测研究。E-mail: kzq@mail.iggcas.ac.cn
基金资助:
QIN Kezhang1,2,3(), ZHAO Junxing1,2, FAN Hongrui1,2,3, TANG Dongmei1,2, LI Guangming1,2,3, YU Kelong1,2,3, CAO Mingjian1,2, SU Benxun1,2,3
Received:
2021-04-12
Revised:
2021-04-25
Online:
2021-05-20
Published:
2021-05-23
摘要:
在大量典型矿床实地调查和国内外综合对比研究的基础上,基于深部找矿的现实需要和存在问题,本文首先回顾评述了主要矿床类型的原始成矿深度,按受控于中下地壳尺度大规模岩浆堆积体的超深成岩浆矿床与受控于流体渗透率制约的中上地壳深成、中成和浅成岩浆热液矿床序列展开。在此基础上尝试探讨主要类型矿床的最大延深垂幅,探讨分析了以Bushveld层状岩体和Voisey’s Bay小岩体为代表的铜镍矿床、驱龙为代表的斑岩铜矿床、Muruntau为代表的造山型金矿、胶东金矿省的已控制延深垂幅、剥蚀程度以及深部可能的延深空间。内生矿床系统具有很宽的成矿深度范围,大型层状岩体的成矿深度可逾20 km,最大矿化垂直延深幅度可达6~8 km。岩浆热液矿床的最大成矿深度以地壳尺度流体渗透的下限为底界,其中造山型金矿床成矿深度最大(约12~15 km),伟晶岩和花岗岩型矿床次之,斑岩型矿床居中(约2~6 km),浅成低温金银矿床深度最浅(1 km至近地表);相应的最大延深垂幅则依次可达4~7 km、2~3 km和1 km。评述了高渗透性的聚矿构造空间、成矿作用顶峰、合适的矿床保存条件等控制因素及部分标志。并对如何确定合理统一的成岩成矿深度(压力)的估算方法以及确定最大成矿深度与矿化体系最大延深幅度的理论依据、判断标志、综合辨识方法体系等未来研究方向进行了展望。
中图分类号:
秦克章, 赵俊兴, 范宏瑞, 唐冬梅, 李光明, 余可龙, 曹明坚, 苏本勋. 试论主要类型矿床的形成深度与最大延深垂幅[J]. 地学前缘, 2021, 28(3): 271-294.
QIN Kezhang, ZHAO Junxing, FAN Hongrui, TANG Dongmei, LI Guangming, YU Kelong, CAO Mingjian, SU Benxun. On the ore-forming depth and possible maximum vertical extension of the major type ore deposits[J]. Earth Science Frontiers, 2021, 28(3): 271-294.
图1 热液矿床形成深度和构造环境(据文献[11]修改) a—与区域走滑剪切带有关的脉状中温热液金矿;b—赋存于褶皱浊积岩中与走滑陡倾逆向滑移断层有关的脉状中温热液金矿;c—断层或裂隙容矿的浅成热液-卡林型金矿;d—与大型正倾斜-滑移(dip-slip)断层有关的近地表贱金属矿床。
Fig.1 Formation depth and structural environments of some hydrothermal deposits. Modified after [11].
图3 不同Cu、Au规模的斑岩铜矿的成矿深度与Cu/Au的关系示意图(据文献[27]) CA为与钙碱性岩浆有关的斑岩铜矿,K为与高钾钙碱性-碱性岩浆有关的斑岩铜矿。
Fig.3 Plots of formation depth vs. Cu/Au ratio for porphyry copper deposits. Adapted after [27].
图5 不同斑岩铜矿床的剥蚀程度与地表蚀变矿化对应位置 a—极浅剥蚀或基本未被剥蚀:甲玛、沙让矿区;b—浅剥蚀:驱龙、土屋矿区;c—中浅剥蚀:玉龙、多宝山及铜厂矿床,类似于智利的丘基卡马塔巨型Cu矿;d—中等剥蚀:美国的宾厄姆Cu矿;e—较深剥蚀:多不杂、乌努格吐山、雄村、包古图矿床,矿体延深小于600~800 m;f—深剥蚀:西藏冲江Cu矿;g—剥蚀近根部:新疆喀拉苏Cu矿,矿体浅部呈条状,向下急剧变窄至尖灭。
Fig.5 Schematic diagram showing the degree of denudation in major porphyry copper deposits and the corresponding alteration and mineralization positions at the denudation surface
图6 当前剥蚀面之下各类金属矿床的近似垂直延深范围变化示意图(约等于预计的各类矿床的频率分布)(据文献[30]修改) 黑色实线宽窄,示向深部的矿化延伸变化趋势(保持稳定、增大或者减少乃至尖灭);虚线,示偶尔出现。
Fig.6 Schematic plots of vertical extension at depth (approximately parallel to the predicted frequency distributions of deposits) for the various metal deposits below the present denudation surface. Modified after [30].
岩体 | 国家 | 年龄/ Ma | 面积/ km2 | 厚度/ km | 矿化类型 |
---|---|---|---|---|---|
Bushveld Complex | 南非 | 2 060 | 65 000 | 7~9 | PGE,Cr,V, Fe,Ti,P |
Sept Iles | 加拿大 | 564 | 5 000 | 6 | Fe,Ti,P |
Duluth | 美国 | 1 100 | 5 000 | 1~5 | PGE,Cu,Ni, Fe,Ti,P,V |
Muskox | 加拿大 | 1 267 | 4 400 | 1.8 | PGE,Cu,Ni,Cr |
Windimurra | 澳大利亚 | 2 800 | 2 300 | 13 | PGE,V |
Bjerkreim-Sokndal | 挪威 | 930 | 230 | 7.5 | Fe,Ti,P,V |
Skaergaard | 格陵兰 | 55 | 90 | 3.5 | PGE,Au |
Rhum | 英国 | 60 | 50 | 1 | PGE,Cr |
攀枝花 | 中国 | 263 | 30 | 2~3 | Fe,Ti,V |
Fedorivka | 乌克兰 | 1 760 | 3 | 0.3 | Fe,Ti,P,V |
表1 全球几个典型层状镁铁、超镁铁岩体
Table 1 List of some typical layered mafic-ultramafic intrusions in the world
岩体 | 国家 | 年龄/ Ma | 面积/ km2 | 厚度/ km | 矿化类型 |
---|---|---|---|---|---|
Bushveld Complex | 南非 | 2 060 | 65 000 | 7~9 | PGE,Cr,V, Fe,Ti,P |
Sept Iles | 加拿大 | 564 | 5 000 | 6 | Fe,Ti,P |
Duluth | 美国 | 1 100 | 5 000 | 1~5 | PGE,Cu,Ni, Fe,Ti,P,V |
Muskox | 加拿大 | 1 267 | 4 400 | 1.8 | PGE,Cu,Ni,Cr |
Windimurra | 澳大利亚 | 2 800 | 2 300 | 13 | PGE,V |
Bjerkreim-Sokndal | 挪威 | 930 | 230 | 7.5 | Fe,Ti,P,V |
Skaergaard | 格陵兰 | 55 | 90 | 3.5 | PGE,Au |
Rhum | 英国 | 60 | 50 | 1 | PGE,Cr |
攀枝花 | 中国 | 263 | 30 | 2~3 | Fe,Ti,V |
Fedorivka | 乌克兰 | 1 760 | 3 | 0.3 | Fe,Ti,P,V |
图7 南非Bushveld层状岩体的平面与剖面地质图(据文献[31]修改) 东西长约450 km; 南北宽约350 km;厚约8 km。
Fig.7 Geological maps of the Bushveld layered complex in South Africa. Modified after [31].
图10 穆龙套金矿区近南北向(A-B)和东西向(D-E)剖面图(据文献[82,83,84]修编) 剖面图示宏大的交代岩及矿化延伸(垂深超过2 500 m,斜深超过4 500 m)和3 000 m以深的隐伏花岗岩。
Fig.10 Near S-N (Left: AB line) and E-W (Right: DE line) trending geological section of the Muruntau gold deposit. Modified after [82-84].
图11 三山岛金矿超深探矿剖面(96勘探线)(据文献[89])
Fig.11 Prospecting line profile (Line No.96) of the Sanshandao gold deposit in Jiaodong Peninsular, China. Adapted after [89].
图12 三山岛金矿流体包裹体温度、盐度纵向变化图(据文献[89])
Fig.12 Vertical variations of homogenization temperature and salinity of fluid inclusions during the early (blue), middle (red) and late stages of mineralization in the Sanshandao gold deposit in Jiaodong Peninsular. Adapted after [89].
图13 全球典型斑岩型矿床成矿岩体形成深度估算和矿体分布特征对比研究(驱龙矿床相关数据来自文献[95,96],其余矿床及底图改编自文献[97])
Fig.13 Estimation of formation depth of ore-forming intrusions and comparison of distribution characteristics of orebodies in typical porphyry deposits in the world. Qulong data adapted from [95,96]; other data adapted or drawing modified from [97].
[1] | 王安建, 高芯蕊. 中国能源与重要矿产资源需求展望[J]. 中国科学院院刊, 2020, 35(3):338-344. |
[2] | 滕吉文. 强化开展地壳内部第二深度空间金属矿产资源地球物理找矿、勘探和开发[J]. 地质通报, 2006(7):767-771. |
[3] | 滕吉文, 姚敬金, 江昌洲, 等. 地壳深部岩浆岩岩基体与大型、超大型金属矿床的形成及找矿效应[J]. 岩石学报, 2009, 25(5):1009-1038. |
[4] | 刘光鼎, 刘秉光, 刘建明, 等. 中国金属矿的地质与地球物理勘查[M]. 北京: 科学出版社, 2013: 1-359. |
[5] | 叶天竺, 吕志成, 庞振山, 等. 勘查区找矿预测理论与方法(总论)[M]. 北京: 地质出版社, 2014: 1-703. |
[6] | 秦克章. 试论大型-超大型铜矿床的主要控制因素[J]. 地学探索, 1993, 8:39-45. |
[7] | 秦克章, 李光明, 赵俊兴, 等. 斑岩型铜矿床[M]//叶天竺, 韦昌山, 王玉往, 等. 勘查区找矿预测理论与方法(各论). 北京; 地质出版社, 2017: 356-406. |
[8] | 王之田, 秦克章. 中国铜矿床类型、成矿环境及其时、空分布特点[J]. 地质学报, 1988(3):257-267. |
[9] | LINDGREN W. Mineral deposits[M]. 4th ed. New York: McGraw Hill Brook Co, 1933. |
[10] | SKINNER B J. Hydrothermal mineral deposits: what we do and what we don’t know[M]// BARNES H L. Geochemistry of hydrothermal ore deposits. 3rd ed. New York: Wiley, 1997: 1-29. |
[11] |
MICKLETHWAITE S, SHELDON H A, BAKER T. Active fault and shear processes and their implications for mineral deposit formation and discovery[J]. Journal of Structural Geology, 2010, 32(2):151-165.
DOI URL |
[12] |
NESBITT B E. Gold deposit continuum: a genetic model for lode Au mineralization in the continental-crust[J]. Geology, 1988, 16(11):1044-1048.
DOI URL |
[13] | AGUE J J. Fluid flow in the deep crust[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Oxford: Pergamon, 2003: 195-228. |
[14] |
NAKANO T, URABE T. Calculated compositions of fluids released from a crystallizing granitic melt: importance of pressure on the genesis of ore forming fluid[J]. Geochemical Journal, 1989, 23(6):307-319.
DOI URL |
[15] |
CERNY P, ERCIT T S. The classification of granitic pegmatites revisited[J]. Canadian Mineralogist, 2005, 43:2005-2026.
DOI URL |
[16] |
CANDELA P A, BLEVIN P L. Do some miarolitic granites preserve evidence of magmatic volatile phase permeability?[J]. Economic Geology, 1995, 90(8):2310-2316.
DOI URL |
[17] | 张德会, 张文淮, 许国建. 岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约[J]. 地学前缘, 2001(3):193-202. |
[18] |
CANDELA P A. A review of shallow, ore-related granites: texture, volatiles, and ore metals[J]. Journal of Petrology, 1997, 38(12):1619-1633.
DOI URL |
[19] | 李建康, 张德会, 李胜虎. 熔体包裹体在估算花岗岩类矿床形成压力(深度)方面的应用[J]. 矿床地质, 2011, 30(6):1002-1016. |
[20] | 张德会. 热液成矿作用地球化学[M]. 地质出版社, 2020: 1-667. |
[21] | 黄永胜, 张辉, 吕正航, 等. 新疆阿尔泰二叠纪、三叠纪伟晶岩侵位深度研究: 来自流体包裹体的指示[J]. 矿物学报, 2016, 36(4):571-585. |
[22] | 任云生, 刘连登, 万相宗, 等. 铜陵地区夕卡岩型独立金矿成矿深度探讨[J]. 大地构造与成矿学, 2004(4):397-403. |
[23] | 吕古贤, 刘瑞, 王方正, 等. 成岩成矿深度构造校正测算和实测[J]. 地质力学学报, 2000(3):50-62. |
[24] | 陈柏林. 从成矿构造动力学探讨脉状金矿床成矿深度[J]. 地质科学, 2001(3):380-384. |
[25] |
LIU X, FAN H R, EVANS N J, et al. Exhumation history of the Sanshandao Au deposit, Jiaodong: constraints from structural analysis and (U-Th)/He thermochronology[J]. Scientific Reports, 2017, 7:7787.
DOI URL |
[26] |
CAO M J, HOLLINGS P, COOKE D R, et al. Physicochemical processes in the magma chamber under the Black Mountain porphyry Cu-Au deposit, Philippines: insights from mineral chemistry and implications for mineralization[J]. Economic Geology, 2018, 113(1):63-82.
DOI URL |
[27] |
CHIARADIA M. Gold endowments of porphyry deposits controlled by precipitation efficiency[J]. Nature Communications, 2020, 11(1):1-10.
DOI URL |
[28] |
CHIARADIA M, CARICCHI L. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment[J]. Scientific Reports, 2017, 7:1-11.
DOI URL |
[29] |
LAZNICKA P. Giant metallic deposits: a century of progress[J]. Ore Geology Reviews, 2014, 62:259-314.
DOI URL |
[30] | LAZNICKA P. Giant metallic deposits: future sources of industrial metals[M]. 2nd ed. Berlin: Springer, 2010. |
[31] |
JUNGE M, WIRTH R, OBERTHUER T, et al. Mineralogical siting of platinum-group elements in pentlandite from the Bushveld Complex, South Africa[J]. Mineralium Deposita, 2015, 50(1):41-54.
DOI URL |
[32] |
WAGER L R, BROWN G M, WADSWORTH W J. Types of igneous cumulates[J]. Journal of Petrology, 1960, 1(1):73-85.
DOI URL |
[33] |
ALAPIETI T T, KUJANPAA J, LAHTINEN J J, et al. The Kemi stratiform chromitite deposit, northern Finland[J]. Economic Geology, 1989, 84(5):1057-1077.
DOI URL |
[34] | EALES H V, BOTHA W J, HATTINGH P J, et al. The mafic rocks of the Bushveld complex: a review of emplacement and crystallization history, and mineralization, in the light of recent data[J]. Journal of African Earth Sciences, 1993, 16(1/2):121-142. |
[35] |
CAMERON E N. Post-cumulus and subsolidus equilibration of chromite and coexisting silicates in eastern Bushveld complex[J]. Geochimica et Cosmochimica Acta, 1975, 39(6/7):1021-1024.
DOI URL |
[36] |
CAMERON E N. Evolution of the lower critical zone, central sector, eastern Bushveld complex, and its chromite deposits[J]. Economic Geology, 1980, 75(6):845-871.
DOI URL |
[37] |
ALAPIETI T T, FILEN B A, LAHTINEN J J, et al. Early Proterozoic layered intrusions in the northeastern part of the fennoscandian Shield[J]. Mineralogy and Petrology, 1990, 42(1/2/3/4):1-22.
DOI URL |
[38] |
CAWTHORN R G. Pressure fluctuations and the formation of the PGE-rich Merensky and chromitite reefs, Bushveld Complex[J]. Mineralium Deposita, 2005, 40(2):231-235.
DOI URL |
[39] |
EMELEUS C H, ALLWRIGHT E A, KERR A C, et al. Red tuffs in the Palaeocene lava successions of the Inner Hebrides[J]. Scottish Journal of Geology, 1996, 32:83-89.
DOI URL |
[40] | FERREIRA C F, NALDRETT A J, ASIF M. Distribution of platinum-group elements in the Niquelandia layered mafic-ultramafic intrusion, Brazil: implications with respect to exploration[J]. Canadian Mineralogist, 1995, 33:165-184. |
[41] |
GIRARDI V A V, FERRARIO A, CORREIA C T, et al. A comparison of selected Precambrian Brazilian chromitites: chromite, PGE-PGM, and Re/Os as parental source indicators[J]. Journal of South American Earth Sciences, 2006, 20(4):303-313.
DOI URL |
[42] |
GARUTI G, PROENZA J A, ZACCARINI F. Distribution and mineralogy of platinum-group elements in altered chromitites of the Campo Formoso layered intrusion (Bahia State, Brazil): control by magmatic and hydrothermal processes[J]. Mineralogy and Petrology, 2007, 89(3/4):159-188.
DOI URL |
[43] |
IRVINE T N. Crystallization sequences in Muskox intrusion and other layered intrusions: Ⅱ. Origin of chromitite layers and similar deposits of other magmatic ores[J]. Geochimica et Cosmochimica Acta, 1975, 39(6/7):991-1020.
DOI URL |
[44] |
YAO Z S, MUNGALL J E, JENKINS M C. The Rustenburg Layered Suite formed as a stack of mush with transient magma chambers[J]. Nature Communications, 2021, 12(1):505.
DOI URL |
[45] |
LIPIN B R. Pressure increases, the formation of chromite seams, and the development of the ultramafic series in the Stillwater complex, Montana[J]. Journal of Petrology, 1993, 34(5):955-976.
DOI URL |
[46] |
MARQUES J C, FERREIRA C F. The chromite deposit of the Ipueira-Medrado sill, Sao Francisco Craton, Bahia State, Brazil[J]. Economic Geology, 2003, 98(1):87-108.
DOI URL |
[47] |
LORD R A, PRICHARD H M, SA J H S, et al. Chromite geochemistry and PGE fractionation in the Campo Formoso complex and Ipueira-Medrado sill, Bahia State, Brazil[J]. Economic Geology, 2004, 99(2):339-363.
DOI URL |
[48] |
GARUTI G, ZACCARINI F. Minerals of Au, Ag and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy[J]. Canadian Mineralogist, 2005, 43:935-950.
DOI URL |
[49] |
O’DRISCOLL B, DAY J M D, DALY J S, et al. Rhenium-osmium isotopes and platinum-group elements in the Rum Layered Suite, Scotland: Implications for Cr-spinel seam formation and the composition of the Iceland mantle anomaly[J]. Earth and Planetary Science Letters, 2009, 286(1/2):41-51.
DOI URL |
[50] | SHARKOV E V. On the intraplate Fe-Ti picrites and basalts as an evidence of the heterogeneous accretion of the earth[J]. Geokhimiya, 1995, (5):733-753. |
[51] | NALDRETT A J. Magmatic sulfide deposits: geology, geochemistry and exploration[M]. Berlin: Springer, 2004. |
[52] |
EALES H V, COSTIN G. Crustally contaminated komatilte: primary source of the chromitites and marginal, lower, and critical zone magmas in a staging chamber beneath the Bushveld Complex[J]. Economic Geology, 2012, 107(4):645-665.
DOI URL |
[53] |
SPANDLER C, MAVROGENES J, ARCULUS R. Origin of chromitites in layered intrusions: evidence from chromite-hosted melt inclusions from the Stillwater Complex[J]. Geology, 2005, 33(11):893-896.
DOI URL |
[54] |
O’DRISCOLL B, EMELEUS C H, DONALDSON C H, et al. Cr-spinel seam petrogenesis in the Rum Layered Suite, NW Scotland: cumulate assimilation and in situ crystallization in a deforming crystal mush[J]. Journal of Petrology, 2010, 51(6):1171-1201.
DOI URL |
[55] |
NALDRETT A J, WILSON A, KINNAIRD J, et al. The origin of chromitites and related PGE mineralization in the Bushveld Complex: new mineralogical and petrological constraints[J]. Mineralium Deposita, 2012, 47(3):209-232.
DOI URL |
[56] | NASLUND H R, MCBIRNEY A R. Mechanisms of formation of igneous layering[J]. Developments in Petrology, 1996: 1-43. |
[57] |
TOPLIS M J, CARROLL M R. An experimental-study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase-relations, and mineral-melt equilibria in ferro-basaltic systems[J]. Journal of Petrology, 1995, 36(5):1137-1170.
DOI URL |
[58] | BARNES S J, RIPLEY E M. Highly siderophile and strongly chalcophile elements in magmatic ore deposits[M]// HARVEY J, DAY J M D. Highly siderophile and strongly chalcophile elements in high-temperature geochemistry and cosmochemistry. Chantilly: Mineralogical Society of America; St. Louis: Geochemical Society, 2016: 725-774. |
[59] | 朱永峰. 豆荚状铬铁矿以及其中铂族元素矿物的成因问题: 进展与展望[J]. 矿床地质, 2017, 36(4):775-794. |
[60] | 白文吉, 杨经绥, 方青松, 等. 西藏罗布莎蛇绿岩豆荚状铬铁矿石中的合金成分[J]. 地质学报, 2004 (5):675-682, 727-728. |
[61] |
MAIER W D, GOMWE T, BARNES S J, et al. Platinum group elements in the Uitkomst Complex, South Africa[J]. Economic Geology, 2004, 99(3):499-516.
DOI URL |
[62] |
NALDRETT T, KINNAIRD J, WILSON A, et al. The concentration of PGE in the Earth’s crust with special reference to the Bushveld Complex[J]. Earth Science Frontiers, 2008, 15(5):264-297.
DOI URL |
[63] |
ARNDT N, JENNER G, OHNENSTETTER M, et al. Trace elements in the Merensky Reef and adjacent norites Bushveld Complex, South Africa[J]. Mineralium Deposita, 2005, 40(5):550-575.
DOI URL |
[64] |
CAWTHORN R G. Cr and Sr: keys to parental magmas and processes in the Bushveld Complex, South Africa[J]. Lithos, 2007, 95(3/4):381-398.
DOI URL |
[65] |
MCCANDLESS T E, RUIZ J, ADAIR B I, et al. Re-Os isotope and Pd-Ru variations in chromitites from the Critical Zone, Bushveld Complex, South Africa[J]. Geochimica et Cosmochimica Acta, 1999, 63(6):911-923.
DOI URL |
[66] |
KINNAIRD J A, HUTCHINSON D, SCHURMANN L, et al. Petrology and mineralisation of the southern Platreef: northern limb of the Bushveld Complex, South Africa[J]. Mineralium Deposita, 2005, 40(5):576-597.
DOI URL |
[67] |
NEX P A M, CAWTHORN R G, KINNAIRD J A. Geochemical effects of magma addition: compositional reversals and decoupling of trends in the Main Zone of the western Bushveld Complex[J]. Mineralogical Magazine, 2002, 66(6):833-856.
DOI URL |
[68] |
SCOON R N, TEIGLER B. Platinum-group element mineralization in the critical zone of the western Bushveld complex: Ⅰ. Sulfide-poor chromitites below the UG-2[J]. Economic Geology, 1994, 89(5):1094-1121.
DOI URL |
[69] |
NALDRETT A J, WILSON A, KINNAIRD J, et al. PGE tenor and metal ratios within and below the Merensky Reef, Bushveld Complex: implications for its Genesis[J]. Journal of Petrology, 2009, 50(4):625-659.
DOI URL |
[70] |
MONDAL S K, MATHEZ E A. Origin of the UG2 chromitite layer, Bushveld Complex[J]. Journal of Petrology, 2007, 48(3):495-510.
DOI URL |
[71] |
VERMAAK C F. A brief overview of South Africa’s mineral industry: world context and changing local circumstances[J]. Mineralium Deposita, 1997, 32(4):312-322.
DOI URL |
[72] |
LIGHTFOOT P C, KEAYS R R, EVANS-LAMSWOOD D, et al. S saturation history of Nain Plutonic Suite mafic intrusions: origin of the Voisey’s Bay Ni-Cu-Co sulfide deposit, Labrador, Canada[J]. Mineralium Deposita, 2012, 47(1/2):23-50.
DOI URL |
[73] |
GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5):7-27.
DOI URL |
[74] | KEPPIE J D, DALLMEYER R D. Terranes in the Circum-Atlantic paleozoic orogens[J]. Geology, 1986, 14(4):360-361. |
[75] |
MUELLER A G, DELAETER J R, GROVES D I. Strontium isotope systematics of hydrothermal minerals from epigenetic Archean gold deposits in the Yilgarn block, western Australia[J]. Economic Geology, 1991, 86(4):780-809.
DOI URL |
[76] | BONNEMAISON M, MARCOUX E. Auriferous mineralization in some shear-zones: a 3-stage model of metallogenesis[J]. Mineralium Deposita, 1990, 25(2):96-104. |
[77] | GROVES D I, GOLDFARB R J, ROBERT F, et al. Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance[J]. Economic Geology, 2003, 98(1):1-29. |
[78] | KERRICH R, GOLDFARB R, GROVES D, et al. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China Series D: Earth Sciences, 2000, 43:1-68. |
[79] | 陈衍景. 造山型矿床、成矿模式及找矿潜力[J]. 中国地质, 2006, 33(6):1181-1196. |
[80] |
KOTOV N V, PORITSKAYA L G. The Muruntau gold deposit: its geologic structure, metasomatic mineral associations and origin[J]. International Geology Review, 1992, 34(1):77-87.
DOI URL |
[81] |
KEMPE U, SELTMANN R, GRAUPNER T, et al. Concordant U-Pb SHRIMP ages of U-rich zircon in granitoids from the Muruntau gold district (Uzbekistan): timing of intrusion, alteration ages, or meaningless numbers[J]. Ore Geology Reviews, 2015, 65:308-326.
DOI URL |
[82] | 张国震, 李志丹, 董新丰, 等. 西天山Muruntau金矿床地质和S-Pb同位素示踪[J]. 岩石学报, 2016, 32(5):1333-1345. |
[83] | WALL V J, YANTZEN V, GRAUPNER T. Muruntau. Uzbekistan report on CERCAMS research project[M]. Spring Hill: Taylor Wall & Associaty, 2004. |
[84] | 薛春纪, 赵晓波, 莫宣学, 等. 西天山“亚洲金腰带”及其动力背景和成矿控制与找矿[J]. 地学前缘, 2014, 21(5):128-155. |
[85] |
KEMPE U, BELYATSKY B V, KRYMSKY R S, et al. Sm-Nd and Sr isotope systematics of scheelite from the giant Au(-W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization[J]. Mineralium Deposita, 2001, 36(5):379-392.
DOI URL |
[86] | 裴荣富. 中国特大型矿床成矿偏在性与异常成矿构造聚敛场[M]. 北京: 地质出版社, 1998: 1-418. |
[87] | 秦克章. 新疆北部中亚型造山与成矿作用[R]. 北京: 中国科学院地质与地球物理研究所, 2000. |
[88] | 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 2015, 45(8):1153-1168. |
[89] |
WEN B J, FAN H R, HU F F, et al. Fluid evolution and ore genesis of the giant Sanshandao gold deposit, Jiaodong gold province, China: constrains from geology, fluid inclusions and H-O-S-He-Ar isotopic compositions[J]. Journal of Geochemical Exploration, 2016, 171:96-112.
DOI URL |
[90] | 范宏瑞, 冯凯, 李兴辉, 等. 胶东-朝鲜半岛中生代金成矿作用[J]. 岩石学报, 2016, 32(10):3225-3238. |
[91] |
HU F F, FAN H R, JIANG X H, et al. Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China[J]. Geofluids, 2013, 13(4):528-541.
DOI URL |
[92] | YANG K F, FAN H R, SANTOSH M, et al. Reactivation of the Archean lower crust: implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton[J]. Lithos, 2012, 146:112-127. |
[93] | LI H K, LI Y F, LI L Y, et al. Discussion about gold ores mineralization of collision-type orogeny in the East of Shandong[M]// TIAN L, HOU H T. Advances in civil and industrial engineering. Switzerland: Trans Tech Publications Ltd, 2013: 1249-1262. |
[94] | 豆敬兆, 付顺, 张华锋. 胶东郭家岭岩体固结冷却轨迹与隆升剥蚀[J]. 岩石学报, 2015, 31(8):2325-2336. |
[95] | 秦克章, 夏代祥, 李光明, 等. 西藏驱龙斑岩-夕卡岩铜钼矿床[M]. 北京: 科学出版社, 2014: 1-316. |
[96] |
ZHAO J X, QIN K Z, XIAO B, et al. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: constraints on magmatic-hydrothermal evolution and exhumation[J]. Gondwana Research, 2016, 36:390-409.
DOI URL |
[97] | SEEDORFF E, DILLES J, PROFFETT J M, et al. Porphyry deposits: characteristics and origin of hypogene features[J]. Economic Geology, 2005, 100th Anniversary Volume: 251-298. |
[98] |
ZHAO J X, QIN K Z, EVANS N J, et al. Volatile components and magma-metal sources at the Sharang porphyry Mo deposit, Tibet[J]. Ore Geology Reviews, 2020, 126:103779.
DOI URL |
[99] |
SHAVER S A. Elemental dispersion associated with alteration and mineralization at the hall (Nevada moly) quartz monzonite-type porphyry molybdenum deposit, with a section on comparison of dispersion patterns with those from Climax-type deposits[J]. Journal of Geochemical Exploration, 1986, 25(1/2):81-98.
DOI URL |
[100] |
DILLES J H. Petrology of the Yerington batholith, Nevada- evidence for evolution of porphyry copper ore fluids[J]. Economic Geology, 1987, 82(7):1750-1789.
DOI URL |
[101] | LI Z Z, QIN K Z, LI G M, et al. Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing’an Range, NE China: partial melting of the juvenile lower crust in intra-plate extensional environment[J]. Lithos, 2014, 202:138-156. |
[102] |
SILLITOE R H. Tops and bottoms of porphyry copper deposits[J]. Economic Geology, 1973, 68(6):799-815.
DOI URL |
[103] |
EINAUDI M T, BURT D M. A special issue devoted to skarn deposits: introduction, terminology, classification, and composition of skarn deposits[J]. Economic Geology, 1982, 77(4):745-754.
DOI URL |
[104] |
PROFFETT J M. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina[J]. Economic Geology, 2003, 98(8):1535-1574.
DOI URL |
[105] |
FAVORITO D A, SEEDORFF E. Laramide uplift near the ray and resolution porphyry copper deposits, southeastern Arizona: insights into regional shortening style, magnitude of uplift, and implications for exploration[J]. Economic Geology, 2020, 115(1):153-175.
DOI URL |
[106] | 庞绪勇, 秦克章, 王乐, 等. 黑龙江铜山断裂的变形特征及铜山铜矿床蚀变带-矿体重建[J]. 岩石学报, 2017, 33(2):398-414. |
[107] | 王乐, 秦克章, 庞绪勇, 等. 多宝山矿田铜山斑岩铜矿床地质特征与蚀变分带: 对热液-矿化中心及深部勘查的启示[J]. 矿床地质, 2017, 36(5):1143-1168. |
[108] |
SEEDORFF E, BARTON M D, STAVAST W J A, et al. Root zones of porphyry systems: extending the porphyry model to depth[J]. Economic Geology, 2008, 103(5):939-956.
DOI URL |
[109] |
RUNYON S E, STEELE-MACINNIS M, SEEDORFF E, et al. Coarse muscovite veins and alteration deep in the Yerington batholith, Nevada: insights into fluid exsolution in the roots of porphyry copper systems[J]. Mineralium Deposita, 2017, 52(4):463-470.
DOI URL |
[110] | 李光明, 张夏楠, 秦克章, 等. 羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿: 综合地质、 热液蚀变及金属矿物组合证据[J]. 岩石学报, 2015, 31(8):2307-2324. |
[111] | 侯增谦. 大陆碰撞成矿论[J]. 地质学报, 2010, 84(1):30-58. |
[112] |
YANG Z M, HOU Z Q, WHITE N C, et al. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet[J]. Ore Geology Reviews, 2009, 36(1/2/3):133-159.
DOI URL |
[113] |
XIAO B, QIN K Z, LI G M, et al. Highly oxidized magma and fluid evolution of miocene qulong giant porphyry Cu-Mo deposit, Southern Tibet, China[J]. Resource Geology, 2012, 62(1):4-18.
DOI URL |
[114] | 肖波, 李光明, 秦克章, 等. 冈底斯驱龙斑岩铜钼矿床的岩浆侵位中心和矿化中心: 破裂裂隙和矿化强度证据[J]. 矿床地质, 2008, 27(2):200-208. |
[115] | 张贻侠. 矿床模型导论[M]. 北京: 地震出版社, 1993. |
[116] | 赵鹏大. 定量地学方法及应用[M]. 北京: 高等教育出版社, 2004. |
[117] | 赵鹏大, 胡旺亮, 李紫金. 矿床统计预测[M]. 北京: 地质出版社, 1994. |
[118] | 毛景文, 张作衡, 裴荣富. 中国矿床模型概论[M]. 北京: 地质出版社, 2012: 1-560. |
[119] | 翟明国. 地球科学学科前沿丛书: 矿产资源形成之谜与需求挑战[M]. 北京: 科学出版社, 2016: 1-159. |
[120] | 秦克章, 翟明国, 李光明, 等. 中国陆壳演化、多块体拼合造山与特色成矿的关系[J]. 岩石学报, 2017, 33(2):305-325. |
[1] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[2] | 邵雪维, 彭永明, 王功文, 赵显勇, 唐佳洋, 黄蕾蕾, 刘晓宁, 赵宪东. 短波红外光谱、X 射线荧光光谱、黄铁矿热电性分析在胶东新城金矿田深部找矿中的应用[J]. 地学前缘, 2021, 28(3): 236-251. |
[3] | 贾然, 王浩然, 王功文, 王皓, 许荣达, 冯占奎, 宋要武, 王肖凌, 庞宗. 河南栾川西沟铅锌银金矿床三维地质建模与深部找矿预测评价[J]. 地学前缘, 2021, 28(3): 156-169. |
[4] | 张华锋, 张少颖. 山西省五台白云叶蜡石矿地质特征及其对深部找矿的启示[J]. 地学前缘, 2020, 27(5): 126-135. |
[5] | 韩润生, 赵冻, 吴鹏, 王雷, 邱文龙, 隆运清, 刘凤平, 邓安平, 宗志宏. 湘南黄沙坪铜锡多金属矿床构造控岩控矿机制及深部找矿勘查启示[J]. 地学前缘, 2020, 27(4): 199-218. |
[6] | 赵正,王登红,陈毓川,刘善宝,方贵聪,梁婷,郭娜欣,王少轶. “九龙脑成矿模式”及其深部找矿示范:“五层楼+地下室”勘查模型的拓展[J]. 地学前缘, 2017, 24(5): 8-16. |
[7] | 阙朝阳, 张达, 狄永军, 毕珉烽, 黄孔文, 徐建珍, 刘艳宾. 滇东南麻栗坡南温河—洒西一带钨矿控矿要素及深部找矿突破[J]. 地学前缘, 2014, 21(2): 286-300. |
[8] | 牛树银,孙爱群,郝梓国,王宝德,马宝军,张建珍,魏明辉. 地幔热柱多级演化及其成矿控矿研究:以张-宣幔枝构造研究为例[J]. 地学前缘, 2011, 18(2): 258-267. |
[9] | 申维. 深部找矿非线性定量理论与技术方法研究进展综述[J]. 地学前缘, 2010, 17(5): 278-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||