| [1] |
HARTMANN A, JASECHKO S, GLEESON T, et al. Risk of groundwater contamination widely underestimated because of fast flow into aquifers[J]. Proceedings of the national academy of sciences of the united states of America, 2021, 118(20): e2024492118.
|
| [2] |
SUTHERSAN S S, HORST J, SCHNOBRICH M, et al. Remediation engineering: design concepts[M]. Boca Raton: CRC Press, 2017.
|
| [3] |
GUO J. Practical design calculations for groundwater and soil remediation[M]. 2nd. Boca Raton: CRC Press, 2014.
|
| [4] |
赵勇胜. 多孔介质含水层污染与修复[M]. 北京: 科学出版社, 2024.
|
| [5] |
US EPA. Green remediation best management practices: an overview[R]. 542-F-22-003. Washington D C: U S EPA, 2022.
|
| [6] |
HOU D Y. Sustainable remediation in China: elimination, immobilization, or dilution[J]. Environmental Science & Technology, 2021, 55: 15572-15574.
DOI
URL
|
| [7] |
MEHRAN N R, BERNDTSSON R, AMINIFAR A, et al. DynSus: dynamic sustainability assessment in groundwater remediation practice[J]. Science of the Total Environment, 2022, 832: 154992.
DOI
URL
|
| [8] |
赵勇胜, 王卓然. 污染场地地下水中污染物迁移及风险管控[J]. 环境保护, 2021, 49(20): 21-26.
|
| [9] |
ZHAO Y S, ZHANG J W, CHEN Z, et al. Groundwater contamination risk assessment based on intrinsic vulnerability, pollution source assessment, and groundwater function zoning[J]. Human and Ecological Risk Assessment, 2018, 25(7): 1907-1923.
DOI
URL
|
| [10] |
COHEN M, SCHWARTZ N, ROSENZWEIG R. Identification of parameter importance for benzene transport in the unsaturated zone using global sensitivity analysis[J]. Hydrology and Earth System Sciences, 2024, 28(7): 1585-1604.
DOI
URL
|
| [11] |
AUGUSTSSON A, SÖDERBERG T U, FRÖBERG M, et al. Failure of generic risk assessment model framework to predict groundwater pollution risk at hundreds of metal contaminated sites: implications for research needs[J]. Environmental Research, 2020, 185: 109252.
DOI
URL
|
| [12] |
JIAO J Y, BEFUS K M, ZHANG Y. Soil contaminants pose delayed but pervasive threat to shallow groundwater[J]. Journal of Hydrology, 2024, 634: 130994.
DOI
URL
|
| [13] |
SUN Y, LIU Y B, YUE G S, et al. Vapor-phase biodegradation and natural attenuation of petroleum VOCs in the unsaturated zone: a microcosm study[J]. Chemosphere, 2023, 336: 139275.
DOI
URL
|
| [14] |
CECILIA D, PORTA G M, FIONA H.M, et al. Probabilistic indicators for soil and groundwater contamination risk assessment[J]. Ecological Indicators, 2020, 115: 106424.
DOI
URL
|
| [15] |
PAYNE F C, QUINNAN J A, POTTER S T. Remediation hydraulics[M]. Boca Raton: CRC Press, 2008.
|
| [16] |
BUGAI D, KIREEV S, HOQUE M A, et al. Natural attenuation processes control groundwater contamination in the Chernobyl exclusion zone: evidence from 35 years of radiological monitoring[J]. Scientific Reports, 2022, 12: 18215.
DOI
|
| [17] |
ABIRIGA D, VESTGARDEN L S, KLEMPE H. Groundwater contamination from a municipal landfill: effect of age, landfill closure, and season on groundwater chemistry[J]. Science of the Total Environment, 2020, 737: 140307.
DOI
URL
|
| [18] |
MCHUGH, T E, ADAMSON, D T, ACTKINSON, B W, et al. Determining PFAA plume stability condition quickly and efficiently[J]. Groundwater Monitoring & Remediation, 2025, 45(1): 68-79.
|
| [19] |
ZHENG C, BENNETT G D. Applied contaminant transport modeling: theory and practice[M]. New York: Van Nostrand Reinhold, 1995.
|
| [20] |
SELIM H. M. Competitive sorption and transport of heavy metals in soils and geological media[M]. Boca Raton: CRC Press, 2013.
|
| [21] |
MASOODI R, PILLAI K M. Wicking in porous materials, traditional and modern modeling approaches[M]. Boca Raton: CRC Press, 2013.
|
| [22] |
BERKOWITZ B, DROR I, YARON B. Contaminant geochemistry: interactions and transport in the subsurface environment[M]. Israel: Springer, Weizmann Institute of Science, 2008.
|
| [23] |
LIN Y F, HUANG J Q, CARR E J. A temporally relaxed theory of physically or chemically non-equilibrium solute transport in heterogeneous porous media[J]. Journal of Hydrology, 2023, 620: 129432.
DOI
URL
|
| [24] |
WANG Y J, WANG M Y, LIU R F. Development on surrogate models for predicting plume evolution features of groundwater contamination with natural attenuation[J]. Water, 2024, 16(19), 2861.
|
| [25] |
BAUMANN T, TOOPS L, NIESSNER R. Colloid dispersion on the pore scale[J]. Water Research, 2010, 44: 1246-1254.
DOI
PMID
|
| [26] |
JAKOBSEN R, HERON G, ALBRECHTSEN H J, et al. Characterization of redox conditions in groundwater contaminant plumes[J]. Journal of Contaminant Hydrology, 2020, 45: 165-241.
DOI
URL
|
| [27] |
POROWSKA D. Carbon and sulfur isotope methods for tracing groundwater contamination: a review of sustainable utilization in reclaimed municipal landfill areas[J]. Sustainability, 2024, 16: 4507.
DOI
URL
|
| [28] |
DENTZ M, COMOLLI A, HAKOUN V, et al. Transport upscaling in highly heterogeneous aquifers and the prediction of tracer dispersion at the MADE site[J]. Geophysical Research Letters, 2020, 47: e2020GL088292.
|
| [29] |
HAGGERTY R, SUN J X, YU H F, et al. Application of machine learning in groundwater quality modeling: a comprehensive review[J]. Water Research, 2023, 233: 119745.
DOI
URL
|
| [30] |
PANNONE M. Theoretical study about ergodicity issues in predicting contaminant plume evolution in aquifers[J]. Water, 2020, 12: 2929.
DOI
URL
|
| [31] |
XU Z X, SERATA R, WAINWRIGHT H, et al. Reactive transport modeling for supporting climate resilience at groundwater contamination sites[J]. Hydrology and Earth System Sciences, 2022, 26, 755-773.
DOI
URL
|
| [32] |
BORIS M, VAN BREUKELEN. Quantifying the degradation and dilution contribution to natural attenuation of contaminants by means of an open system rayleigh equation[J]. Environmental Science & Technology, 2007, 41(14): 4980-4985.
DOI
URL
|
| [33] |
赵勇胜. 地下水污染场地的控制与修复[M]. 北京: 科学出版社, 2015.
|
| [34] |
LEONARD F. Molecular and biophysical aspects of adaptation of life to temperatures below the freezing point[J]. Advances in Space Research, 1996, 18(12): 87-95.
|
| [35] |
FARHAT S K, NEWELL C J, LEE S A, et al. Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds[J]. Journal of Contaminant Hydrology, 2022, 247: 103987.
DOI
URL
|
| [36] |
KENT R D, JOHNSON R H, LAASE A D, et al. Modeling evaluation of the impact of residual source material on remedial time frame at a former uranium mill site[J]. Journal of Contaminant Hydrology, 2024, 261: 104298.
DOI
URL
|