| [1] |
Agterberg, F.P., 1974. Geomathematics. Elsevier, Amsterdam.
|
| [2] |
Anderson, S., Gislason, S., 2011. Geochemistry of the Earth’s surface. Applied Geochemistry, 26: S1-S2.
|
| [3] |
Asif, R., 2025. Meet AlphaEarth Foundations: Google DeepMind’s so called ‘virtual satellite’ in AI-driven planetary mapping. https://www.marktechpost.com/2025/07/31/meet-alphaearth-foundations.
|
| [4] |
Banerjee, S., Carlin, B.P., Gelfand, A.E., 2014. Hierarchical Modeling and analysis for spatial data. CRC Press, Boca Raton.
|
| [5] |
Boone, A., 2025. Google’s newest AI acts like a satellite to track climate change. https://www.wired.com/story/googles-newest-ai-model-acts-like-asatellite-to-track-climate-change.
|
| [6] |
Brown, C.F., Kazmierski, M.R., Pasquarella, V.J., et al., 2025. AlphaEarth Foundations: an embedding field model for accurate and efficient global mapping from sparse label data. https://doi.org/10.48550/arXiv.2507.22291.
|
| [7] |
Carranza, E.J.M., 2008. Geochemical anomaly and mineral prospectivity mapping in GIS. In:Handbook of exploration and environmental geochemistry. Elsevier, Amsterdam.
|
| [8] |
Cheng, Q.M., Agterberg, F.P, 1999. Fuzzy weights of evidence method and its application in mineral potential mapping. Natural Resources Research, 8(1): 27-35.
|
| [9] |
Cheng, Q.M., 2018. Mathematical geosciences:local singularity analysis of nonlinear Earth systems. In:Daya Sagar, B., Cheng, Q., Agterberg, F. (Eds.), Handbook of mathematical geosciences. Springer, Cham, pp. 179-208.
|
| [10] |
Cheng, Q.M., 2021a. IUGS’ initiative on data-driven geoscience discovery. Journal of Earth Science, 32(2): 468-470.
|
| [11] |
Cheng, Q.M., 2021b. Whatis mathematical geoscience and its cutting-edge fields? Earth Science Frontiers, 28(3): 6-25. (in Chinese with English abstract)
|
| [12] |
Cheng, Q.M., Oberhnsli, R., Zhao, M.L., 2020. A new international initiative for facilitating data-driven Earth science transformation. Geological Society, London, Special Publications, 499(1): 225-240.
|
| [13] |
Cracknell, A.P., 1998. Synergy in remote sensing: what’s in a pixel? International Journal of Remote Sensing, 19(11): 2025-2047.
|
| [14] |
Cressie, N., Wikle, C.K., 2011. Statistics for spatio-temporal data. Wiley, New York.
|
| [15] |
Daya Sagar, B., Cheng, Q., Agterberg, F. (Eds.), 2018. Handbook of mathematical geosciences. Springer, Cham.
|
| [16] |
DeepMind, 2025a. AlphaEarth Foundations helps map our planet in unprecedented detail. https://deepmind.google/discover/blog/alphaearth-foundations-helps-map-our-planet-in-unprecedented-detail/.
|
| [17] |
DeepMind, 2025b. Dataset release: satellite embedding V1 annual (2017-2024). Google Earth Engine. https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_SATELLITE_EMBEDDING_V1_ANNUAL.
|
| [18] |
Dentith, M., Mudge, S.T., 2014. Geophysics for the mineral exploration geoscientist. Cambridge University Press, Cambridge.
|
| [19] |
Drusch, M., Del Bello, U., Carlier, S., et al., 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120(15): 25-36.
|
| [20] |
Drury, S.A., 1987. Image interpretation in geology. Allen & Unwin, Sydney.
|
| [21] |
Fu, H.Z., Cheng, Q.M., Jing, L.H., et al. 2021. Deep learning-based hydrothermal alteration mapping using GaoFen-5 hyperspectral data in the Duolong Ore District, Western Tibet, China. Journal of Applied Remote Sensing, 15(4): 044512.
|
| [22] |
Fu, H.Z., Kereszturi, G., Cheng, Q.M., et al. 2024. Deciphering differential exhumation in the Gangdese orogen in southern Tibet using exposed porphyry alteration systems and geomorphic analysis. Geological Society of America Bulletin, 136(9/10): 3795-3809.
|
| [23] |
Gillespie, A.R., Kahle, A.B., Walker, R.E., 1986. Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches. Remote Sensing of Environment, 20(3): 209-235.
|
| [24] |
Ge, Y.Z., Zhang, Z.J., Cheng, Q.M., et al. 2022. Geological mapping of basalt using stream sediment geochemical data: case study of covered areas in Jining, Inner Mongolia, China. Journal of Geochemical Exploration, 232: 106888.
|
| [25] |
Goetz, A.F.H., Vane, G., Solomon, J.E., et al. 1985. Imaging spectrometry for Earth remote sensing. Science, 228(4704): 1147-1153.
|
| [26] |
Goodchild, M.F., Li, L., 2021. Replication across space and time must be weak in the social and environmental sciences. PNAS, 118(35): e2015759118.
|
| [27] |
Hinze, W.J., von Frese, R.R.B., Saad, A.H., 2013. Gravity and magnetic exploration:principles, practices, and applications. Cambridge University Press, Cambridge.
|
| [28] |
Houriez, L., Pilarski, S., Vahedi, B., et al. 2025. Scalable geospatial data generation using AlphaEarth Foundations model. https://arxiv.org/abs/2508.11739.
|
| [29] |
Hunt, G.R., 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3): 501-513.
|
| [30] |
Joyce, K.E., Belliss, S.E., Samsonov, S.V., et al. 2009. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Progress in Physical Geography, 33(2): 183-207.
|
| [31] |
Jordan, M.I., Mitchell, T.M., 2015. Machine learning: trends, perspectives, and prospects. Science, 349(6245): 255-260.
|
| [32] |
Karpatne, A., Atluri, G., Faghmoous, J.H., et al. 2017. Theory-guided data science: a new paradigm for scientific discovery. IEEE TKDE, 29(10): 2318-2331.
|
| [33] |
Kim, Y., Nakata, N., 2018. Geophysical inversion versus machine learning in inverse problems. The Leading Edge, 37: 894-901.
|
| [34] |
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature, 521(7553): 436-444.
|
| [35] |
Lucía, G.D., 2025. From imagery to insight: Google AlphaEarth Foundations in CARTO. https://carto.com/blog/google-alphaearth-foundations-in-carto.
|
| [36] |
Michael, N., 2025. GoogleDeepMind says its new AI can map the entire planet with unprecedented accuracy. https://venturebeat.com/ai/googledeepmind-says-its-new-ai-can-map-the-entire-planet-withunprecedented-accuracy.
|
| [37] |
Oberhnsli, R., 2020. Deep-time Digital Earth (DDE) the First IUGS Big Science Program. Journal of the Geological Society of India, 95(3): 223-226.
|
| [38] |
Pasquarella, V., Schechter, E., 2025. AI-powered pixels: introducing Google’s satellite embedding dataset. https://venturebeat.com/ai/googledeepmind-says-its-new-ai-can-map-the-entire-planet-withunprecedented-accuracy
|
| [39] |
Reichstein, M., Camps-Valls, G., Stevens, B., et al. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743): 195-204.
|
| [40] |
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., et al. 2015. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71: 804-818.
|
| [41] |
Singh, A., 1989. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6): 989-1003.
|
| [42] |
Smith, D.B., Cannon, W.F., Woodruff, L.G., et al. 2013. Geochemical and mineralogical data for soils of the conterminous United States. US Geological Survey Data Series, Reston, 801: 19.
|
| [43] |
Stephenson, M.H., Cheng, Q.M., Wang, C.S., et al. 2020. Progress towards the establishment of the IUGS Deep-time Digital Earth (DDE) programme. Episodes, 43: 1057-1062.
|
| [44] |
Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J.J., et al. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3(1): 1-9.
|
| [45] |
Wulder, M.A., Masek, J.G., Cohen, W.B., et al. 2012. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122: 2-10.
|
| [46] |
Zhao, T., Wang, S., Ouyang, C.J., et al. 2024. Artificial intelligence for geoscience: progress, challenges, and perspectives. The Innovation, 5(5): 100691.
|