

地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 276-285.DOI: 10.13745/j.esf.sf.2025.8.64
收稿日期:2025-04-06
修回日期:2025-07-02
出版日期:2025-11-25
发布日期:2025-11-12
作者简介:杨建军(1956—),男,研究员,博士生导师,主要从事高压变质作用研究。E-mail: jjyang@mail.iggcas.ac.cn
基金资助:Received:2025-04-06
Revised:2025-07-02
Online:2025-11-25
Published:2025-11-12
摘要:
造山带高压变质岩分布于古地震断裂内及其附近。一般认为高压变质作用是在俯冲地壳中沿断裂浸入的流体作用下进行的。但是关于榴辉岩石榴子石反应边的研究表明它们是缺乏流体参与的变质反应的特征结构。山东青岛仰口榴辉岩中高压矿物的星射状生长结构,富含原岩矿物包裹体的筛状结构,以及斜长石假象和镁铁矿物之间的反应边结构,均反映出榴辉岩的不平衡结晶性质。这类结构指示岩石是在快速过程中形成的,具有动力变质作用的时长特点。斜长石假象的相图也表明,仰口榴辉岩是由缺乏自由流体的辉长岩转变而来的,矿物生长过程涉及的元素扩散必然是在固态介质中进行的。鉴于仰口的各种榴辉岩(反应边榴辉岩,榴辉岩角砾岩及碎裂岩脉)记录了冲击波挤压和释放波解压的过程,可以认为高压相变是受地震波冲击作用的驱动而不是俯冲过程中压力和温度缓慢升高所致。在冲击应力作用下,水不饱和岩石中元素扩散速率相对静态热驱动的固态扩散高出多个甚至十多个数量级,使高压矿物瞬时生长。
中图分类号:
杨建军. 榴辉岩石榴子石反应边的震击成因初探[J]. 地学前缘, 2025, 32(6): 276-285.
YANG Jianjun. Seismic shock induced formation of garnet coronas in eclogites: A perspective[J]. Earth Science Frontiers, 2025, 32(6): 276-285.
图1 辉长岩转变为榴辉岩的反应边结构(a据文献[25]修改;b引自文献[30]) a—山东青岛仰口含柯石英榴辉岩中斜长石假象(Jd+Ph+Ky细粒集合体)与辉石假象(Omp+Qz+Rt细粒集合体)之间的石榴子石反应边(矿物代号参照文献[29])。反应边由3个亚层构成,下方靠近斜长石的淡色亚层,中间含大量金红石细粒的褐红色亚层和上方靠近辉石假象只含少量金红石的褐红色亚层,后者含柯石英包裹体。退变质部分硬玉被Ab+Amp取代。b—极地乌拉尔变橄长岩中的反应边。从橄榄石到斜长石假象形成4层反应边,顺序为斜方辉石→石榴子石→单斜辉石→石榴子石。斜长石假象中针状黝帘石呈放射状集合体。
Fig.1 Corona textures in eclogitized gabbros. a modified after [25]; b adapted from [30].
图2 等温(500 ℃)下斜长石假象的p-M(H2O)(压力-水含量(摩尔分数))假切面(引自文献[26]) 用于计算的总组成为:SiO2含量65.00%, Al2O3含量16.00%, CaO含量5.76%, MgO含量1.27%, FeO含量2.79%, K2O含量0.87%, Na2O含量8.01%, Fe2O3含量0.30% (构成NCKFMASHO体系)。水饱和线以下(其左边不含H2O相的区域),含水量最高的矿物组合以钠云母为特征,含水量最低的矿物组合以钾长石为特征。观察到的变辉长岩和含石英反应边榴辉岩斜长石假象中的矿物组合分别位于水含量在2%~3%(摩尔分数)及压力为0.82~1.12 GPa和大于1.26 GPa的区域。
Fig.2 Isothermal p-M(H2O) pseudosection at 500 ℃ for the plagioclase pseudomorphs. Adapted from [26].
图3 仰口含柯石英榴辉岩角砾岩石榴子石中金红石构成的“爆炸结构”(引自文献[52]) a—仰口榴辉岩角砾岩石榴子石碎裂颗粒中呈放射状排布的针状、棒状和粒状金红石构成的“爆炸结构”(单偏光);b—同a(正交偏光)
Fig.3 Explosion pattern formed by rutile granules in a garnet grain in the coesite-bearing eclogite breccia at Yangkou. Adapted from [52].
图4 仰口榴辉岩石榴子石反应边形成过程示意图 a—辉长岩原岩由普通辉石+斜长石+石英构成;b—震击非晶化阶段(详见正文),辉石假象和斜长石假象之间存在Mg、Ca、Fe、Na、Al和Si等元素的化学位梯度驱使它们向低化学位方向扩散;c—非晶质结晶为榴辉岩。辉石假象结晶为绿辉石+柯石英+金红石,斜长石假象结晶为硬玉+多硅白云母+蓝晶石+柯石英(退变质部分硬玉为富钠斜长石+角闪石取代),二者之间形成石榴子石反应边。此处的矿物组合分布参照图1a。全部石英颗粒均假设由柯石英退变而来。
Fig.4 Schematic illustration for the formation of garnet coronas between augite and plagioclase during eclogitization of a gabbro at Yangkou
| [1] | AHRENS T J, SCHUBERT G. Gabbro-eclogite reaction rate and its geophysical significance[J]. Reviews of Geophysics and Space Physics, 1975, 13: 383-400. |
| [2] | KOONS P O, RUBIE D C, FRUCH-GREEN G. The effects of disequilibrium and deformation on the mineralogical evolution of quartz diorite during metamorphism in the eclogite facies[J]. Journal of Petrology, 1987, 28(4): 679-700. |
| [3] | JAMTVEIT B, BUCHER-NURMINEN K, AUSTRHEIM H. Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen Arcs, western Norway[J]. Contributions to Mineralogy and Petrology, 1990, 104: 184-193. |
| [4] | AUSTRHEIM H, PUTNIS C V, ENGVIK A K, et al. Zircon coronas around Fe-Ti oxides: a physical reference frame for metamorphic and metasomatic reactions[J]. Contributions to Mineralogy and Petrology, 2008, 156: 517-527. |
| [5] | JAMTVEIT B, AUSTRHEIM H. Metamorphism: The role of fluids[J]. Elements, 2010, 6: 153-158. |
| [6] | ERNST W G. Do mineral parageneses reflect unusually high-pressure conditions of Franciscan metamorphism?[J]. American Journal of Science, 1971, 270(2): 81-108. |
| [7] | AUSTRHEIM H, Eclogitization of lower crustal granulites by fluid migration through shear zones[J]. Earth and Planetary Science Letters, 1987, 81(2/3): 221-232. |
| [8] | WAYTE G J, WORDEN R H, RUBIE D C, et al. A tem study of disequilibrium plagioclase breakdown at high pressure: the role of infiltrating fluid[J]. Contributions to Mineralogy and Petrology, 1989, 101: 426-437. |
| [9] | RUBIE D C. Role of kinetics in the formation and preservation of eclogites[M]// CARSWELL D A. Eclogite facies rocks. Glasgow: Blackie, 1990: 111-140. |
| [10] | BIINO G G, COMPAGNONI R. Very high-pressure metamorphism of the Brossasco coronite metagranite, southern Dora-Maira massif, western Alps[J]. Schweizerische Mineralogische und Petrologische Mitteilungen, 1992, 72: 347-363. |
| [11] | WALTHER J V. Fluid-rock reactions during metamorphism at mid-crustal conditions[J]. Journal of Geology, 1994, 102(5): 559-570. |
| [12] | AUSTRHEIM H, ERAMBERT M, ENGVIK A K. Processing of crust in the root of the caledonian continental collision zone: the role of eclogitization[J]. Tectonophysics, 1997, 273: 129-153. |
| [13] | WAIN A L, WATERS D J, AUSTRHEIM H. Metastability of granulites and processes of eclogitisation in the UHP region of western Norway[J]. Journal of Metamorphic Geology, 2001, 19(5): 609-625. |
| [14] | MÖRK M B E. A gabbro to eclogite transition on flemsøy, sunnmøre, western Norway[J]. Chemical Geology, 1985, 50: 283-310. |
| [15] | GILOTTI J A, ELVEVOLD S. Partial eclogitization of the Ambolten gabbro-norite, North-East Greenland Caledonides[J]. Schweizerische Mineralogische und Petrographische Mitteilungen, 1998, 78: 273-292. |
| [16] | JOHN T, SCHENK V. Partial eclogitisation of gabbroic rocks in a late Precambrian subduction zone (Zambia): prograde metamorphism triggered by fluid infiltration[J]. Contributions to Mineralogy and Petrology, 2003, 146: 174-191. |
| [17] | POGNANTE U. Coronitic reactions and ductile shear zones in eclogitised ophiolite metagabbro, western Alps, North Italy[J]. Chemical Geology, 1985, 50(1/2/3): 99-109. |
| [18] | LUND M G, AUSTRHEIM H. High-pressure metamorphism and deep-crustal seismicity: evidence from contemporaneous formation of pseudotachylytes and eclogite facies coronas[J]. Tectonophysics, 2003, 372(1/2): 59-83. |
| [19] | ZHANG R Y, LIOU J G. Partial transformation of gabbro to coesite-bearing eclogite from Yangkou, the Sulu terrane, eastern China[J]. Journal of Metamorphic Geology, 1997, 15: 183-202. |
| [20] | AUSTRHEIM H. Fluid and deformation induced metamorphic processes around Moho beneath continent collision zones: examples from the exposed root zone of the Caledonian mountain belt, W-Norway[J]. Tectonophysics, 2013, 609: 620-635. |
| [21] | PETLEY-RAGAN A, DUNKEL K G, AUSTRHEIM H, et al. Microstructural records of earthquakes in the lower crust and associated fluid-driven metamorphism in plagioclase-rich granulites[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3729-3746. |
| [22] | JACKSON J A, AUSTRHEIM H, MCKENZIE D, et al. Metastability, mechanical strength, and the support of mountain belts[J]. Geology, 2004, 32: 625-628. |
| [23] | JOHN T, MEDVEDEV S, RUPKE LH, et al. Generation of intermediate-depth earthquakes by self-localizing thermal runaway[J]. Nature Geoscience, 2009, 2(2): 137-140. |
| [24] | ZERNATI S, MENEGON L, PENNACCHIONI G, et al. Protracted localization of metamorphism and deformation in a heterogeneous lower-crustal shear zone[J]. Journal of Structural Geology, 2023, 176. DOI: 10.1016/j.jsg.2023.104960. |
| [25] | YANG J J, HUANG M X, WU Q Y, et al. Coesite-bearing eclogite breccia: implication for coseismic ultrahigh-pressure metamorphism and the rate of the process[J]. Contributions to Mineralogy and Petrology, 2014, 167(6): 1013-1030. |
| [26] | YANG J-J, ZHANG H R, CHEN A P, et al. Petrological evidence for shock-induced high-p metamorphism in a gabbro[J]. Journal of Metamorphic Geology, 2017, 35: 121-140. |
| [27] | WALLIS SR, ISHIWATARI A, HIRAJIMA T, et al. Occurrence and field relationships of ultrahigh-pressure metagranitoid and coesite eclogite in the Su-Lu terrane, eastern China[J]. Journal of the Geological Society, 1997, 154(1): 45-54. |
| [28] | RUBIE D C. The catalysis of mineral reactions by water and restrictions on the presence of aqueous fluid during metamorphism[J]. Mineralogical Magazine, 1986, 50: 399-415. |
| [29] | WHITNEY D L, EVANS B W. Abbreviations for names of rock-forming minerals[J]. American Mineralogist, 2010, 95(1): 185-187. |
| [30] | LARIKOVA T. Bell-shape garnet zoning development during eclogitization of the corona textures[R]. Oslo:33th International Geological Congress, 2008. |
| [31] | GAIDIES F. Disequilibrium microstructures of metamorphic rocks[M]// ALDERTON D, ELIAS S A. Encyclopedia of geology. 2 nd ed. Oxford: Academic Press, 2021: 389-396. |
| [32] | JOESTEN R. Evolution of mineral assemblage zoning in diffusion metasomatism[J]. Geochimica et Cosmochimica Acta, 1977, 41: 649-670. |
| [33] | FISHER G W. Rate laws in metamorphism[J]. Geochimica et Cosmochimica Acta, 1978, 42(7): 1035-1050. |
| [34] | ASHWORTH J R, SHEPLEV V S. Diffusion modelling of metamorphic layered coronas with stability criterion and consideration of affinity[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3671-3689. |
| [35] | JOHNSON C D, CARLSON W D. The origin of olivine-plagioclase coronas in metagabbros from the Adirondack mountains, New York[J]. Journal of Metamorphic Geology, 1990, 8: 697-717. |
| [36] | GAIDIES F. Nucleation in geological materials. HEINRICH W, ABART R. Mineral reaction kinetics: microstructures, textures, chemical and isotopic signatures[M]. Rio San Juan: European Mineralogical Union and Mineralogical Society of Great Britain and Ireland, 2017: 347-371. |
| [37] | SCHÖRN S, DIENER J F A. Details of the gabbro-to-eclogite transition determined from microtextures and calculated chemical potential relationships[J]. Journal of Metamorphic Geology, 2017, 35: 55-75. |
| [38] | CARLSON W D. Scales of disequilibrium and rates of equilibration during metamorphism[J]. American Mineralogist, 2002, 87: 185-204. |
| [39] | YANG J-J, FAN Z-F, YU C, et al. Coseismic formation of eclogite facies cataclasite dykes at Yangkou in the Chinese Su-Lu UHP metamorphic belt[J]. Journal of Metamorphic Geology, 2014, 32(9): 937-960. |
| [40] | FISHER G W. Nonequilibrium thermodynamics as a model for diffusion-controlled metamorphic processes[J]. American Journal of Science, 1973, 273(10): 897-924. |
| [41] | KELLER L M, GÖTZE L C, RYBACKI E, et al. Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics[J]. American Mineralogist, 2010, 95(10): 1399-1407. |
| [42] | WALTHER J V, WOOD B J. Rate and mechanism in prograde metamorphism[J]. Contributions to Mineralogy and Petrology, 1984, 88: 246-259. |
| [43] | HEINRICH C A. Kyanite-eclogite to amphibolite evolution of hydrous mafic and pelitic rocks, Adula nappe, central Alps[J]. Contributions to Mineralogy and Petrology, 1982, 81: 30-38. |
| [44] | ASHWORTH J R. Fluid-absent diffusion kinetics of al inferred from retrograde metamorphic coronas[J]. American Mineralogist, 1993, 78: 331-337. |
| [45] | LIU D Y, JIAN P, KRÖNER A, et al. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China[J]. Earth and Planetary Science Letters, 2006, 250(3/4): 650-666. |
| [46] | YANG J-J, POWELL R. Ultrahigh-pressure garnet peridotites from the devolatilization of sea-floor hydrated ultramafic rocks[J]. Journal of Metamorphic Geology, 2008, 26(6): 695-716. |
| [47] | CHU X, AGUE J J, PODLADCHIKOV Y Y, et al. Ultrafast eclogite formation via melting-induced overpressure[J]. Earth and Planetary Science Letters, 2017, 479: 1-17. |
| [48] | CHEN A-P, YANG J-J, ZHONG D-L, et al. Epidote spherulites and radial euhedral epidote aggregates in a greenschist facies metavolcanic breccia hosting an UHP eclogite in Dabieshan (China): implication for dynamic metamorphism[J]. American Mineralogist, 2019, 104(8): 1197-1212. |
| [49] | GÖTZE L C, ABART R, RYBACKI E, et al. Reaction rim growth in the system MgO-Al2O3-SiO2 under uniaxial stress[J]. Mineralogy and Petrology, 2010, 99(3): 263-277. |
| [50] | SU W H, LIU S E, XU D P, et al. Effects of local mechanical collision with shear stress on the phase transformation from a-quartz to coesite induced by high static pressure[J]. Physical Review B, 2006, 73: 144110-144117. |
| [51] | 杨建军. 震击高压变质作用: 观察与启示[J]. 岩石学报, 2015, 31: 2465-2476. |
| [52] | YANG J J, XU H J, HIRAJIMA T. Oriented acicular rutile inclusions in eclogites: exsolutions from majoritic garnet or shock needles?[J]. Geochemistry, Geophysics, Geosystems, 2024, 25(10): e2024GC011712. |
| [53] | GRAHAM R A. Solids under high-pressure shock compression, mechanics, physics, and chemistry[M]. New York: Springer-Verlag, 1993: 221. |
| [54] | KLEIMAN J, CHAN P W C, SALANSKY N, et al. Chemical-reaction and diffusion rates in solids produced by shock compression[J]. Journal of Applied Physics, 1986, 59: 1956-1961. |
| [55] | BEAUCHAMP E K, CARR M J. Kinetics of phase change in explosively shock-treated alumina[J]. Journal of the American Ceramic Society, 1990, 73(1): 49-53. |
| [56] | KLEIMAN J, SALANSKY N, GLASS II. Chromite formation by shock-wave compression[J]. Journal of Applied Physics, 1985, 58(5): 1819-1827. |
| [57] | FRENCH B M, KOEBERL C. The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why[J]. Earth-Science Reviews, 2010, 98(1/2): 123-170. |
| [58] | AUSTRHEIM H, CORFU F. Formation of planar deformation features (PDFs) in zircon during coseismic faulting and an evaluation of potential effects on U-Pb systematics[J]. Chemical Geology, 2009, 261(1/2): 24-30. |
| [59] | HWANG S L, YUI T F, CHU H T, et al. On the origin of oriented rutile needles in garnet from UHP eclogites[J]. Journal of Metamorphic Geology, 2007, 25(3): 349-362. |
| [60] | PROYER A, HABLER G, ABART R, et al. TiO2 exsolution from garnet by open-system precipitation: evidence from crystallographic and shape preferred orientation of rutile inclusions[J]. Contributions to Mineralogy and Petrology, 2013, 166(1): 211-234. |
| [61] | PALMERI R, FREZZOTTI M L, GODARD G, et al. Pressure-induced incipient amorphization of a-quartz and transition to coesite in an eclogite from antarctica: a first record and some consequences[J]. Journal of Metamorphic Geology, 2009, 27(9): 685-705. |
| [62] | FREZZOTTI M L, PALMERI R, FERRANDO S, et al. a-quartz in UHP rocks: Irrelevant or critical?[C]// XI International Eclogite Conference, vol Abstract. Dominican Republic, Middlesex: Dominican Geological Survey, 2015: 38. |
| [63] | SU W, ZHANG M, CHEN J, et al. Amorphization in natural omphacite and its implications[J]. Journal of Asian Earth Sciences, 2011, 42(4): 694-703. |
| [64] | HWANG S L, SHEN P, CHU H T, et al. Nanometer-size α-PbO2-type TiO2 in garnet: a thermobarometer for ultrahigh-pressure metamorphism[J]. Science, 2000, 288(5464): 321-324. |
| [65] | El GORESY A, CHEN M, GILLET P. A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries crater in Germany[J]. Earth and Planetary Science Letters, 2001, 192(4): 485-495. |
| [66] | HWANG S L, SHEN P, YUI T F, et al. Defect microstructures of minerals as a potential indicator of extremely rapid and episodic exhumation of ultrahigh-pressure metamorphic rock: implication to continental collision orogens[J]. Earth and Planetary Science Letters, 2001, 192(1): 57-63. |
| [67] | DUBINCHUK V, SIMAKOV S, PECHNIKOV V. Lonsdaleite in diamond-bearing metamorphic rocks of the Kokchetav massif[J]. Doklady Earth Sciences, 2010, 430(1): 40-42. |
| [1] | 贾国栋, 徐胜, 刘丛强. 江西龙南花岗岩风化壳形成和演化的铀系不平衡约束[J]. 地学前缘, 2024, 31(4): 366-379. |
| [2] | 李曙光, 安诗超. 变质岩同位素年代学:Rb-Sr和Sm-Nd体系[J]. 地学前缘, 2014, 21(3): 246-255. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
