地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 411-437.DOI: 10.13745/j.esf.sf.2025.4.6

• 非主题来稿选登 • 上一篇    下一篇

初论矿产勘查系统理论:热液矿床控制-映射勘查系统架构

韩润生1,2,*(), 张艳1,2,*()   

  1. 1.昆明理工大学 国土资源工程学院 地球科学系, 云南 昆明 650093
    2.有色金属矿产地质调查中心 西南地质调查所, 云南 昆明 650093
  • 收稿日期:2025-03-24 修回日期:2025-04-17 出版日期:2025-11-25 发布日期:2025-11-12
  • 通信作者: 韩润生,张艳
  • 基金资助:
    国家自然科学基金项目(42172086);国家自然科学基金项目(42472127);云南省矿产资源预测与评价工程研究中心项目(2011);云南省昆明理工大学创新团队项目(2012)

A preliminary discussion on the mineral exploration system theory: Control-mapping exploration system architecture for hydrothermal deposits

HAN Runsheng1,2,*(), ZHANG Yan1,2,*()   

  1. 1. Department of Earth Sciences, Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093,China
    2. Southwest Geological Survey, Nonferrous Metals Minerals Geological Survey Center, Kunming 650093, China
  • Received:2025-03-24 Revised:2025-04-17 Online:2025-11-25 Published:2025-11-12
  • Contact: HAN Runsheng, ZHANG Yan

摘要:

随着全球矿产资源需求的持续增长,高效勘查已成为保障资源安全的必然选择。当前,矿产资源需求不断攀升,深地探测和物化探技术快速进步,人工智能与信息技术迅猛发展,亟待建立高效的矿产勘查系统理论,尤其是对于广泛分布但难以定位的热液型矿床。热液型矿床具有构造控制显著、流体来源多元、成矿过程复杂、矿体形态多样、热液蚀变明显、经济价值突出和找矿难度大等特点,其形成与构造作用、岩浆活动或地热系统密切相关,明显受构造环境、流体性质及其物理化学条件控制,在本质上是热液运移-沉淀的动力学过程,是构造驱动矿质活化、流体运移和构造“末端”与流体“末端”耦合成矿作用的产物。数十年来,矿床模型在找矿实践中发挥着重要作用,但以此驱动的矿产勘查理论和技术在满足深部找矿勘查需求方面仍面临挑战。为此,本研究综合国内外矿产勘查研究成果和团队大量找矿实践,从矿产勘查系统的内涵出发,引入“映射”(mapping)概念,探讨了成矿构造系统(MTS)、热液成矿系统(HMS)和勘查信息系统(EIS)之间的控制-映射关系,初建了热液矿床三元协同的控制-映射勘查系统论的基本架构(HD-CMSA)。从时间-空间-物质-能量4个维度,论证了其理论(TFCMS)和技术框架(MFCMS)中需解决的关键科学技术问题和研究内容,以阐明成矿构造系统对热液成矿系统多层次成矿空间的控制作用,勘查信息系统对成矿构造系统和热液成矿系统的多尺度映射关系,并通过实例验证多尺度(矿集区、矿田和矿床)找矿勘查技术方法组合“三部曲”的有效性。本研究为深部隐伏矿床(体)预测和矿产勘查提供了新的理论视角,有望推动矿产资源高效勘查与评价,助力新一轮找矿突破行动。

关键词: 控制-映射勘查系统论架构, 成矿构造系统, 热液成矿系统, 勘查信息系统, 找矿勘查技术组合“三部曲”

Abstract:

Under the growing global demand for mineral resources, the efficient exploration has become a critical pathway to ensuring resource security. With the sharp rise in mineral consumption, the deep-earth exploration and geophysical-geochemical methods, along with transformative innovations in AI and information technology, are crucial for establishing a theoretical framework for rapid and precise mineral exploration systems. This framework especially targets extensively distributed hydrothermal deposits. Hydrothermal deposits exhibit several key characteristics, including (1) pronounced structural controls, (2) polygenetic fluid sources, (3) multistage metallogenic processes, (4) heterogeneous orebody geometries, (5) diversified mineral assemblages, (6) intensive hydrothermal alteration halos, (7) exceptional economic significance, and (8) formidable exploration challenges. The hydrothermal deposits are genetically linked to tectonic dynamics, magmatic-hydrothermal activities or geothermal systems. Thus, these deposits are often governed by tectonic setting, fluid properties, and ore-forming physicochemical conditions. Fundamentally, the ore-forming process is driven by the dynamic mechanisms of hydrothermal fluid migration and mineral precipitation. The ore deposits result from tectonically driven metal activation, fluid migration, and the coupling between tectonic terminals (pathways) and fluid terminals (traps) during mineralization. For decades, deposit models have played a critical role in mineral exploration practices. However, the theory and technology of mineral exploration based on these models still face significant challenges in meeting the demands of deep-seated ore prospecting. To address these challenges, this study synthesizes both domestic and international research findings in mineral exploration,combined with extensive field experience from our research team. Building on the conceptual framework of mineral exploration systems, our team applies the “Mapping” concept to elucidate the control-response relationships among three interrelated system: the Metallogenic Tectonic System (MTS), the Hydrothermal Metallogenic System (HMS), and the Exploration Information System (EIS). Then, leads to the development of a preliminary architecture for the Control-Mapping Exploration System Theory of Hydrothermal Deposits (HD-CMSA) is established, emphasizing the tripartite synergy among the MTS, HMS, and EIS. When building on this architecture and working from the four dimensions of time, space, material, and energy, this study identifies and addresses key scientific and technological challenges in the Theoretical Framework of Control-Mapping Systems (TFCMS) and the Methodological Framework of Control-Mapping Systems (MFCMS). Finally, this study elucidates the multiscale control of the MTS over ore districts, ore fields, and deposits, as well as the multiscale mapping relationships between the geophysical-geochemical anomaly information system and both the MTS and the HMS. Moreover, the effectiveness of the “Exploration Trilogy” technical workflow, applied at multiple scales (ore district to ore field to deposit), is validated through case studies. This research presents a novel theoretical paradigm for predicting deep-seated concealed deposits or orebodies and advancing mineral exploration. The research can significantly enhance the efficiency of mineral resource exploration and evaluation, thereby facilitating the New Round of Strategic Action for Mineral Exploration breakthroughs.

Key words: control-mapping exploration system theory architecture, metallogenic tectonic system (MTS), hydrothermal metallogenic system (HMS), exploration information system (EIS), “exploration trilogy” technical workflow

中图分类号: