[1] |
ZHANG C, LU N. What is the range of soil water density?critical reviews with a unified model[J]. Reviews of Geophysics, 2018, 56(3): 532-562.
|
[2] |
张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 6版. 北京: 地质出版社, 2011.
|
[3] |
MARTIN R T. Adsorbed water on clay: a review[J]. Clays and Clay Minerals (National Conference on Clays and Clay Minerals), 1960, 9: 28-70.
|
[4] |
BAHRAMIAN Y, BAHRAMIAN A, JAVADI A. Confined fluids in clay interlayers: a simple method for density and abnormal pore pressure interpretation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521: 260-271.
|
[5] |
MILLINGTON R J, QUIRK J P. Permeability of porous media[J]. Nature, 1959, 183(4658): 387-388.
|
[6] |
程东会, 李慧, 王军, 等. 准饱和多孔介质中地下水驱替速率、 圈闭气体饱和度和准饱和渗透系数的关系[J]. 地学前缘, 2022, 29(3): 256-262.
DOI
|
[7] |
MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
|
[8] |
LENNARD-JONES J E. Cohesion[J]. Proceedings of the Physical Society, 1931, 43(5): 461-482.
|
[9] |
MARCUS Y. Thermodynamics of solvation of ions.part 5.: gibbs free energy of hydration at 298.15 K[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(18): 2995-2999.
|
[10] |
滕新荣. 表面物理化学[M]. 北京: 化学工业出版社, 2009.
|
[11] |
ISRAELACHVILI J N. Intermolecular and surface forces[M]. 3rd ed. Burlington, MA: Academic Press, 2011.
|
[12] |
ALEXIADIS A, KASSINOS S. Molecular simulation of water in carbon nanotubes[J]. Chemical Reviews, 2008, 108(12): 5014-5034.
DOI
PMID
|
[13] |
LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016051.
|
[14] |
DUAN C H, KARNIK R, LU M C, et al. Evaporation-induced cavitation in nanofluidic channels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(10): 3688-3693.
DOI
PMID
|
[15] |
ZHENG Q, DURBEN D J, WOLF G H, et al. Liquids at large negative pressures: water at the homogeneous nucleation limit[J]. Science, 1991, 254(5033): 829-832.
PMID
|
[16] |
LIN NY, GUY B M, HERMES M, et al. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions[J]. Physical Review Letters, 2015, 115(22): 228304.
|
[17] |
BRADY J F, MORRIS J F. Microstructure of strongly sheared suspensions and its impact on rheology and diffusion[J]. Journal of Fluid Mechanics, 1997, 348: 103-139.
|
[18] |
WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions[J]. Physics Today, 2009, 62(10): 27-32.
|
[19] |
BOSSIS G, BRADY J F. The rheology of Brownian suspensions[J]. The Journal of chemical physics, 1989, 91(3): 1866-1874.
|
[20] |
邓耿, 尉志武. 液态水的结构研究进展[J]. 科学通报, 2016, 61(30): 3181-3187.
|
[21] |
SPURK J, AKSEL N. Fluid mechanics[M]. Berlin: Springer Science and Business Media, 2007.
|
[22] |
DURST F, LOY T. Investigations of laminar flow in a pipe with sudden contraction of cross sectionalarea[J]. Computers and Fluids, 1985, 13(1): 15-36.
|
[23] |
齐鄂荣, 曾玉红. 工程流体力学[M]. 武汉: 武汉大学出版社, 2005.
|
[24] |
赵孝保. 工程流体力学[M]. 3版. 南京: 东南大学出版社, 2012.
|
[25] |
BULLEN P R, CHEESEMAN D J, HUSSAIN L A, et al. The determination of pipe contraction pressure loss coefficients for incompressible turbulent flow[J]. InternationalJournal of Heat and Fluid Flow, 1987, 8(2): 111-118.
|
[26] |
CHANG CC, CHENG D H. Predicting the soil water retention curve from the particle size distribution based on a pore space geometry containing slit-shaped spaces[J]. Hydrology and Earth System Sciences, 2018, 22(9): 4621-4632.
|
[27] |
程东会, 常琛朝, 钱康, 等. 考虑薄膜水的利用介质粒度分布获取水土特征曲线的方法[J]. 水科学进展, 2017, 28(4): 534-542.
|