地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 422-443.DOI: 10.13745/j.esf.sf.2024.5.26
秦阳1(), 刘池洋1,*(
), 彭光荣2, 黄雷1, 李洪博2, 梁超1, 吴哲2, 杨丽华1
收稿日期:
2024-01-31
修回日期:
2024-04-15
出版日期:
2025-07-25
发布日期:
2025-08-04
通信作者:
*刘池洋(1953—),男,教授,博士生导师,主要从事油气地质、能源地质和盆地动力学等方面的科研与教学工作。E-mail: 作者简介:
秦 阳(1998—),男,博士研究生,主要从事盆地油气地质与构造解析等方面的研究。E-mail: yangqin202021427@163.com
基金资助:
QIN Yang1(), LIU Chiyang1,*(
), PENG Guangrong2, HUANG Lei1, LI Hongbo2, LIANG Chao1, WU Zhe2, YANG Lihua1
Received:
2024-01-31
Revised:
2024-04-15
Online:
2025-07-25
Published:
2025-08-04
摘要:
云开低凸起位处两个富烃凹陷之间,油气勘探前景好,且其在理解珠江口盆地东、西部差异演化研究中具有重要地位。本文以深度域3D地震资料为基础,结合生长地层特征、构造演化剖面和沉降史模拟结果,重点论述了低凸起的地质结构构造、断裂特征和构造演化过程,分析了构造演化动力环境及其构造分区作用。云开低凸起由北至南可分为3段,各地段结构形态不同,不同地段间及其与洼陷间多以断裂接触。生长地层特征分析及低凸起与两侧洼陷的隆-降响应特性模拟结果揭示云开低凸起不同部位的隆升速率存在时空差异。新生代裂陷期与裂后期断裂的几何学和运动学特征有别,且由早至晚断裂走向发生顺时针旋转。基底内幕可识别出具有挤压或压扭性质的两期晚中生代断裂体系,其对新生代断裂具有明显制约作用。整体上,低凸起晚中生代经历了晚侏罗世—早白垩世NW向和晚白垩世早—中期近SN向的两期挤压变形。新生代经历了始新世的快速隆升、晚始新世—早中新世的缓慢隆升和中新世至今的整体沉积-沉降深埋3个主要形成阶段。综合分析认为,云开低凸起作为两侧凹陷间的构造转换带,在位置上与NW向阳江—一统暗沙断裂带南段深浅叠置,调节凹陷差异构造变形及盆地差异演化。云开低凸起所在的NW向构造转换带具有重要的深部动力学背景,该特性造成盆地新生代NE向优势构造的分区。
中图分类号:
秦阳, 刘池洋, 彭光荣, 黄雷, 李洪博, 梁超, 吴哲, 杨丽华. 珠江口盆地云开低凸起形成演化及构造分区作用[J]. 地学前缘, 2025, 32(4): 422-443.
QIN Yang, LIU Chiyang, PENG Guangrong, HUANG Lei, LI Hongbo, LIANG Chao, WU Zhe, YANG Lihua. Formation and evolution of the Yunkai low uplift in the Pearl River Mouth Basin and its structural partition effects[J]. Earth Science Frontiers, 2025, 32(4): 422-443.
图1 珠江口盆地云开低凸起及邻区区域地质背景和典型人工井位分布图(图b据文献[27]修改)
Fig. 1 Regional geological background and distribution of typical artificial wells in the Yunkai low uplift and adjacent areas of the Pearl River Mouth Basin. b modified after [27].
图2 珠江口盆地构造层划分及新生代综合地层柱状图(据文献[12,34,48,52]修改)
Fig.2 Tectonic stratigraphic divisions and the integrated Cenozoic stratigraphic histogram of the Pearl River Mouth Basin. Modified after [12,34,48,52].
图3 云开低凸起及周缘Tg界面地貌(a)、Tg(b)和T50(c)界面构造图
Fig.3 Topography of the Yunkai low uplift and the surrounding Tg interface (a) and the structure of the Tg (b) and T50 (c) interfaces
对比项目 | 北段 | 中段 | 南段 | |
---|---|---|---|---|
地层结构构造 | 基底埋深 | 低(5 000~7 000 m) | 较高(2 500~4 600 m) | 高(1 750~4 200 m) |
地层分布 | 地层沉积序列相对完整 (缺失文6-5段)、 地层厚度大 | 沉积序列部分缺失 (文6-4段、上文昌组大部)、 地层厚度较小 | 沉积序列不完整(文昌组 缺失严重)、地层厚度小 | |
构造形态 | 断凸结构构造 | 宽缓背斜构造 | 大型断阶构造 | |
生长地层 | 削截、上超、披覆; 上超期次少、披覆厚度大 | 上超、披覆;上超期 次较多、披覆厚度较小 | 上超、披覆;上超期 次多、披覆厚度小 | |
与两侧洼陷接触关系 | 断裂接触 (断裂、断裂-斜坡) | 断裂接触关系不明显 (斜坡、断阶) | 断裂接触 (大型断裂) | |
新生代断裂 | 走向 | NW-NNW | NW-NWW、NEE | NW-NWW、NEE |
延伸长度 | 较小 | 小 | 较大 | |
密度 | 小 | 较小 | 较大 | |
活动性 | 较弱 | 弱 | 强 | |
晚中生代断裂 | 走向 | NW-NWW | NW-NWW、NEE | NW-NWW、NEE |
延伸长度 | 较小 | 小 | 较大 | |
密度 | 小 | 较小 | 较大 |
表1 云开低凸起不同地段相关构造特征对比表
Table 1 A comparison of the associated structural features in different sections of the Yunkai low uplift
对比项目 | 北段 | 中段 | 南段 | |
---|---|---|---|---|
地层结构构造 | 基底埋深 | 低(5 000~7 000 m) | 较高(2 500~4 600 m) | 高(1 750~4 200 m) |
地层分布 | 地层沉积序列相对完整 (缺失文6-5段)、 地层厚度大 | 沉积序列部分缺失 (文6-4段、上文昌组大部)、 地层厚度较小 | 沉积序列不完整(文昌组 缺失严重)、地层厚度小 | |
构造形态 | 断凸结构构造 | 宽缓背斜构造 | 大型断阶构造 | |
生长地层 | 削截、上超、披覆; 上超期次少、披覆厚度大 | 上超、披覆;上超期 次较多、披覆厚度较小 | 上超、披覆;上超期 次多、披覆厚度小 | |
与两侧洼陷接触关系 | 断裂接触 (断裂、断裂-斜坡) | 断裂接触关系不明显 (斜坡、断阶) | 断裂接触 (大型断裂) | |
新生代断裂 | 走向 | NW-NNW | NW-NWW、NEE | NW-NWW、NEE |
延伸长度 | 较小 | 小 | 较大 | |
密度 | 小 | 较小 | 较大 | |
活动性 | 较弱 | 弱 | 强 | |
晚中生代断裂 | 走向 | NW-NWW | NW-NWW、NEE | NW-NWW、NEE |
延伸长度 | 较小 | 小 | 较大 | |
密度 | 小 | 较小 | 较大 |
图4 云开低凸起不同地段NW向地震剖面A-A'及近SN向B-B'地震剖面图(剖面位置见图1c)
Fig.4 Seismic profiles A-A' in the NW direction and B-B'in the near SN direction at different sections of the Yunkai low uplift (see Fig.1c for the location of the profiles)
图5 云开低凸起不同段与两侧洼陷地层接触关系图(剖面位置见图1c,图例同图4a)
Fig.5 Relationship between different sections of the Yunkai low uplift and the depressions on either side of the stratigraphic contacts (see Fig.1c for location of profiles;legend as in Fig.4a)
图6 研究区新生代不同构造层系断裂纲要图(a-f)和不同构造单元的断裂走向图(g-i)
Fig.6 Outline diagrams of Cenozoic faults of different structural layers in the study area (a-f) and the fault strikes of different tectonic units (g-i)
图7 云开低凸起及周缘不同构造层断裂发育密度(a)、延伸长度(b)、非研究区断裂密度(c)、不同构造层断裂发育数量占比(d)和断裂走向(e-g)图(断裂位置见图1c)
Fig.7 Density of fault development at different structural layers (a), length of extension (b), density of faults in the non-study area (c), percentage of fault development at different structural layers (d), and strike of faults (e-g) at the Yunkai low uplift and its surroundings (for location of faults,see Fig.1c)
图8 基底断裂古垂直断距(a-d、f)和活动速率(e)统计图(断裂位置及测线号见图1c)
Fig.8 Diagrams of paleo-vertical fault throws (a-d, f) and activity rates (e) statistics for basement faults (see Fig.1c for location of faults and line numbers)
图9 云开低凸起和周缘晚中生代基底先存构造(a)、不同构造期伸展方向空间关系(b)及应力场方向解析(c)图
Fig.9 Diagram of Late Mesozoic basement pre-existing structures (a), the spatial relationship between the extension directions in different tectonic stages (b) and the direction analysis of the stress field (c) in the study area
图10 云开低凸起及周缘晚中生代断裂剖面特征图(剖面位置见图9a)
Fig.10 Late Mesozoic fault profiles characteristic of the Yunkai low uplift and the surroundings (see Fig.9a for the location of the profiles)
图11 云开低凸起及周缘洼陷沉降特征(a-h)图(井位具体见图1c)
Fig.11 Diagram of subsidence characteristics of the Yunkai low uplift and surrounding sags (a-h) (see Fig.1c for specifics of well locations)
图13 云开低凸起及其周缘不同地段新生代构造演化图(原始剖面位置见图1c)
Fig.13 Diagram of the Cenozoic tectonic evolution of the Yunkai low uplift and its surrounding different sections (see Fig.1c for locations of original sections)
图14 云开低凸起及周缘晚中生代—新生代构造演化模式图(沉积相发育特征修改自文献[70])
Fig.14 Diagram of the Late Mesozoic-Cenozoic tectonic evolutionary pattern of the Yunkai low uplift and its periphery. Sedimentary facies modified after [70].
图15 研究区及邻区化极磁异常、Moho面深度及大地热流等值线图(修改自文献[20,21,47])
Fig.15 Contour map of polar magnetic anomalies, Moho surface depth and geothermal heat flow in the study area and its neighboring areas. a-b modified after [20,21,47].
[1] | SUN W D. Initiation and evolution of the South China Sea: an overview[J]. Acta Geochimica, 2016, 35(3): 215-225. |
[2] | YE Q, MEI L F, SHI H S, et al. The influence of pre-existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea riftedmargin[J]. Tectonics, 2020, 39(3): e2019TC005845. |
[3] | MU D L, PENG G R, ZHU D W, et al. Structure and formation mechanism of the Pearl River mouth basin: insights from multi-phase strike-slip motions in the Yangjiang Sag, SE China[J]. Journal of Asian Earth Sciences, 2022, 226: 105081. |
[4] | 庞雄, 陈长民, 朱明, 等. 南海北部陆坡白云深水区油气成藏条件探讨[J]. 中国海上油气, 2006, 18(3): 145-149. |
[5] | 朱俊章, 施和生, 庞雄, 等. 利用流体包裹体方法分析白云凹陷LW3-1-1井油气充注期次和时间[J]. 中国石油勘探, 2010, 15(1): 52-56, 1-2. |
[6] | XIE H W, ZHOU D, LI Y P, et al. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Tectonophysics, 2009, 615: 182-198. |
[7] |
朱伟林, 吴景富, 张功成, 等. 中国近海新生代盆地构造差异性演化及油气勘探方向[J]. 地学前缘, 2015, 22(1): 88-101.
DOI |
[8] | BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. |
[9] | NORTHRUP C J, ROYDEN L H, BURCHFIEL B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 1995, 23(8): 719-722. |
[10] | TSAI C H, HSU S K, YEH Y C, et al. Crustal thinning of the northern continental margin of the South China Sea[J]. Marine Geophysical Researches, 2004, 25(1): 63-78. |
[11] | ZHOU D, WANG W Y, WANG J L, et al. Mesozoic subduction-accretion zone in northeastern South China Sea inferred from geophysical interpretations[J]. Science in China Series D, 2006, 49(5): 471-482. |
[12] | XIE H, ZHOU D, SHI H C, et al. Lithospheric stretching-style variations and anomalous post-rift subsidence in the deep water sub-basins of the Pearl River Mouth Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 131: 105140. |
[13] | FRANKE D, SAVVA D, PUBELLIER M, et al. The final rifting evolution in the South China Sea[J]. Marine and Petroleum Geology, 2014, 58: 704-720. |
[14] | BAI Y L, WU S G, LIU Z, et al. Full-fit reconstruction of the South China Sea conjugate margins[J]. Tectonophysics, 2015, 661: 121-135. |
[15] | SUN Q L, ALVES T, XIE X N, et al. Free gas accumulations in basal shear zones of mass-transport deposits (Pearl River Mouth Basin, South China Sea): an important geohazard on continental slope basins[J]. Marine and Petroleum Geology, 2017, 81: 17-32. |
[16] | NANNI U, PUBELLIER M, CHAN L S, et al. Rifting and reactivation of a Cretaceous structural belt at the northern margin of the South China Sea[J]. Journal of Asian Earth Sciences, 2017, 136: 110-123. |
[17] | HUANG K, ZHONG G F, HE M, et al. Growth and linkage of a complex oblique-slip fault zone in the Pearl River Mouth Basin, northern South China Sea[J]. Journal of Structural Geology, 2018, 117: 27-43. |
[18] | YE Q, MEI L F, SHI H S, et al. The Late Cretaceous tectonic evolution of the South China Sea area: an overview, and new perspectives from 3D seismic reflection data[J]. Earth-Science Reviews, 2018, 187: 186-204. |
[19] | YE Q, MEI L F, SHI H S, et al. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area[J]. Tectonophysics, 2018, 731: 1-16. |
[20] | LI Y H, ZHU R W, LIU H L, et al. The Cenozoic activities of Yangjiang-yitongdong fault: insights from analysis of the tectonic characteristics and evolution processes in western Zhujiang (pearl) river mouth basin[J]. Acta Oceanologica Sinica, 2019, 38(9): 87-101. |
[21] | HU J, TIAN Y T, LONG Z L, et al. Thermo-rheological structure of the northern margin of the South China Sea: structural and geodynamic implications[J]. Tectonophysics, 2020, 777: 228338. |
[22] | GE J W, ZHU X M, ZHAO X M, et al. Tectono-sedimentary signature of the second rift phase in multiphase rifts: a case study in the Lufeng Depression (38-33.9 Ma), Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2020, 114: 104218. |
[23] | YU Y X, ZHANG T L, ZHANG Z T, et al. Structural characteristics and its significances on hydrocarbon accumulation in the Yunkai low uplift, Pearl River mouth basin[J]. Acta Geologica Sinica - English Edition, 2021, 95(1): 21-29. |
[24] | ZHOU J, LI S Z, SUO Y H, et al. NE-trending transtensional faulting in the Pearl River Mouth basin of the Northern South China Sea margin[J]. Gondwana Research, 2023, 120: 4-19. |
[25] | TANG X, YU Y X, ZHANG X T, et al. Multiphase faults activation in the southwest Huizhou Sag, Pearl River Mouth basin: insights from 3D seismic data[J]. Marine and Petroleum Geology, 2023, 152: 106257. |
[26] | 田立新, 刘杰, 张向涛, 等. 珠江口盆地惠州26-6大中型泛潜山油气田勘探发现及成藏模式[J]. 中国海上油气, 2020, 32(4): 1-11. |
[27] | 蔡国富, 张向涛, 彭光荣, 等. 南海北部阳江-一统暗沙断裂带与新近纪岩浆活动[J]. 大地构造与成矿学, 2021, 45(1): 40-52. |
[28] |
鲁宝亮, 王璞珺, 张功成, 等. 南海北部陆缘盆地基底结构及其油气勘探意义[J]. 石油学报, 2011, 32(4): 580-587.
DOI |
[29] | 孙晓猛, 张旭庆, 张功成, 等. 南海北部新生代盆地基底结构及构造属性[J]. 中国科学: 地球科学, 2014, 44(6): 1312-1323. |
[30] |
吕彩丽, 张功成, 杨东升. 珠江口盆地珠二坳陷文昌组构造差异性与动力学成因机制[J]. 地学前缘, 2017, 24(6): 333-341.
DOI |
[31] | 张远泽, 漆家福, 吴景富. 南海北部新生代盆地断裂系统及构造动力学影响因素[J]. 地球科学, 2019, 44(2): 603-625. |
[32] | ZHAO F, ALVES T M, XIA S H, et al. Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures[J]. Earth and Planetary Science Letters, 2020, 530: 115862. |
[33] | ZHU W L, HUANG B J, MI L J, et al. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea[J]. AAPG Bulletin, 2009, 93(6): 741-761. |
[34] | 施和生, 何敏, 张丽丽, 等. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J]. 中国海上油气, 2014, 26(3): 11-22. |
[35] |
柳保军, 庞雄, 颜承志, 等. 珠江口盆地白云深水区渐新世—中新世陆架坡折带演化及油气勘探意义[J]. 石油学报, 2011, 32(2): 234-242.
DOI |
[36] | 米立军, 张向涛, 庞雄, 等. 珠江口盆地形成机制与油气地质[J]. 石油学报, 2019, 40(增刊1): 1-10. |
[37] | 钟锴, 张功成, 侯国伟, 等. 云开低凸起: 南海北部深水区油气勘探新领域[J]. 中国海上油气, 2008, 20(1): 15-17, 27. |
[38] | 龚再升, 李思田. 南海北部大陆边缘盆地油气成藏动力学研究[M]. 北京: 科学出版社, 2004: 9-29. |
[39] | 陈长民. 珠江口盆地(东部)第三系油气藏形成条件[M]. 北京: 科学出版社, 2003: 1-121. |
[40] | SUN Z, ZHOU D, SUN L T, et al. Dynamic analysis on rifting stage of Pearl River Mouth basin through analogue modeling[J]. Journal of Earth Science, 2010, 21(4): 439-454. |
[41] | WANG P C, LI S Z, SUO Y H, et al. Structural and kinematic analysis of Cenozoic rift basins in South China Sea: a synthesis[J]. Earth-Science Reviews, 2021, 216: 103522. |
[42] | GUO X Y, LI C S, GAO R, et al. The India-Eurasia convergence system: late Oligocene to early Miocene passive roof thrusting driven by deep-rooted duplex stacking[J]. Geosystems and Geoenvironment, 2022, 1(1): 100006. |
[43] | YANG F L, ZHOU X F, HU Y Y, et al. Neoproterozoic extensional basins and its control on the distribution of hydrocarbon source rocks in the Yangtze Craton, South China[J]. Geosystems and Geoenvironment, 2022, 1(1): 100015. |
[44] | GUAN W, HUANG L, LIU C Y, et al. Interactions between pre-existing structures and rift faults: implications for basin geometry in the northern South China Sea[J]. Basin Research, 2024, 36(1): e12822. |
[45] | LI F C, SUN Z, YANG H F. Possible spatial distribution of the Mesozoic volcanic arc in the present-day South China Sea continental margin and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2018, 123: 6215-6235. |
[46] | 鲁宝亮, 王璞珺, 张功成, 等. 南海区域断裂特征及其基底构造格局[J]. 地球物理学进展, 2015, 30(4): 1544-1553. |
[47] | 刘海伦, 梅廉夫, 施和生, 等. 珠江口盆地珠-坳陷裂陷结构: 基底属性与区域应力联合制约[J]. 地球科学, 2018: 1-17. |
[48] | 叶青. 南海北部陆缘晚中生代构造体系: 动力学以及对珠江口盆地新生代构造的制约[D]. 武汉: 中国地质大学(武汉), 2019. |
[49] | LI S Z, SUO Y H, SANTOSH M, et al. Mesozoic to Cenozoic intracontinental deformation and dynamics of the North China Craton[J]. Geological Journal, 2013, 48(5): 543-560. |
[50] | 刘雨晴. 南海周缘新生代盆地结构时空差异及其控制因素[D]. 东营: 中国石油大学(华东), 2019. |
[51] | HAN J H, XU G Q, LI Y Y, et al. Evolutionary history and controlling factors of the shelf breaks in the Pearl River Mouth Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2016, 77: 179-189. |
[52] |
HAQ B U, HARDENBOL J, VAIL P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167.
PMID |
[53] | TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611. |
[54] | ZAHIROVIC S, SETON M, MÜLLER R. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia[J]. Solid Earth, 2013, 5: 227-273. |
[55] | ZHOU D, RU K, CHEN H Z. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1/2/3/4): 161-177. |
[56] | MORLEY C K. Major unconformities/termination of extension events and associated surfaces in the South China Seas: review and implications for tectonic development[J]. Journal of Asian Earth Sciences, 2016, 120: 62-86. |
[57] |
SHI H S, DU J Y, MEI L F, et al. Huizhou movement and its significance in Pearl River mouth basin, China[J]. Petroleum Exploration and Development, 2020, 47(3): 483-498.
DOI |
[58] | 李平鲁. 珠江口盆地新生代构造运动[J]. 中国海上油气, 1993, 5(6): 11-17. |
[59] | 庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统—中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2): 145-151. |
[60] | 庞雄, 陈隽, 戴一丁, 等. 珠江口盆地白云西-开平凹陷油气聚集及勘探目标研究[J]. 中国海上油气(地质), 1995, 7(4): 237-245. |
[61] |
JIAN Z M, JIN H Y, KAMINSKI M A, et al. Discovery of the marine Eocene in the northern South China Sea[J]. National Science Review, 2019, 6(5): 881-885.
DOI |
[62] | 陈汉宗, 吴湘杰, 周蒂, 等. 珠江口盆地中新生代主要断裂特征和动力背景分析[J]. 热带海洋学报, 2005, 24(2): 52-61. |
[63] | 马兵山. 南海北部珠江口盆地新生代构造特征及其演化[D]. 北京: 中国石油大学(北京), 2020. |
[64] | 何敏, 朱伟林, 吴哲, 等. 珠江口盆地新构造运动特征与油气成藏[J]. 中国海上油气, 2019, 31(5): 9-20. |
[65] | WEI W, FAURE M, CHEN Y, et al. Back-thrusting response of continental collision: early Cretaceous NW-directed thrusting in the Changle-Nan’ao belt (SouthEast China)[J]. Journal of Asian Earth Sciences, 2015, 100: 98-114. |
[66] | HILDE T W C, UYEDA S, KROENKE L. Evolution of the western Pacific and its margin[J]. Tectonophysics, 1977, 38(1/2): 145-165. |
[67] | MATTHEWS K J, SETON M, MÜLLER R D. A global-scale plate reorganization event at 105-100 Ma[J]. Earth and Planetary Science Letters, 2012, 355: 283-298. |
[68] | MÜLLER R D, SETON M, ZAHIROVIC S, et al. Ocean basin evolution and global-scale plate reorganization events since pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 107-138. |
[69] | 高阳东, 彭光荣, 张向涛, 等. 珠江口盆地白云凹陷古近系文昌组源-汇系统特征及演化[J]. 石油与天然气地质, 2023, 44(3): 584-599. |
[70] | 曾智伟. 南海北部珠江口盆地古近纪源-汇系统耦合研究[D]. 武汉: 中国地质大学(武汉), 2020. |
[71] | 王家林, 张新兵, 吴健生, 等. 珠江口盆地基底结构的综合地球物理研究[J]. 热带海洋学报, 2002, 21(2): 13-22. |
[1] | 何建华, 曹红秀, 邓虎成, 印长海, 朱彦平, 李厂, 李勇, 尹帅. 川东北营山-平昌地区凉高山组页岩天然裂缝发育特征及其形成演化模式研究[J]. 地学前缘, 2024, 31(5): 17-34. |
[2] | 陈雯霖, 郑求根, 黄一鸣, 张懿, 林畅松. 南海南缘礼乐盆地在南海扩张前的位置恢复[J]. 地学前缘, 2023, 30(5): 420-429. |
[3] | 曾韬, 凡睿, 夏文谦, 邹玉涛, 石司宇. 四川盆地东部走滑断裂识别与特征分析及形成演化:以涪陵地区为例[J]. 地学前缘, 2023, 30(3): 366-385. |
[4] | 何登发. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律[J]. 地学前缘, 2022, 29(6): 24-59. |
[5] | 叶涛, 牛成民, 王德英, 王清斌, 代黎明, 陈安清. 渤海西南海域中生代构造演化、动力学机制及其对华北克拉通破坏的启示[J]. 地学前缘, 2022, 29(5): 133-146. |
[6] | 张向涛, 彭光荣, 王光增, 刘欣颖, 赵利, 杨悦, 占华旺, 于海洋, 马晓倩, 李三忠. 珠江口盆地惠州运动的断裂响应研究:以阳江东凹为例[J]. 地学前缘, 2022, 29(5): 161-175. |
[7] | 段威, 田金强, 李三忠, 于强, 陈瑞雪, 龙祖烈. 南海珠江口盆地惠州凹陷东南缘远源凸起带油气成因及来源[J]. 地学前缘, 2022, 29(5): 176-187. |
[8] | 詹诚, 卢绍平, 方鹏高. 汇聚背景下的多幕裂陷作用及其迁移机制:以南海北部珠江口盆地为例[J]. 地学前缘, 2022, 29(4): 307-318. |
[9] | 颜茂都, 张大文, 李明慧. 思茅和呵叻盆地钾盐矿研究新进展和新认识[J]. 地学前缘, 2021, 28(6): 10-28. |
[10] | 罗霞, 方旭庆, 张云银, 张云涛. 济阳坳陷桩海地区古生界潜山构造特征及形成机制[J]. 地学前缘, 2021, 28(1): 33-42. |
[11] | 葛家旺, 朱筱敏, 雷永昌, 于福生. 多幕裂陷盆地构造-沉积响应及陆丰凹陷实例分析[J]. 地学前缘, 2021, 28(1): 77-89. |
[12] | 梁光河. 从东海和南海北部盆地群演化探讨日本大陆板块的形成过程[J]. 地学前缘, 2020, 27(1): 244-259. |
[13] | 王杰, 吴海波, 鲁小飞, 李献瑞. 开合构造在不同时空尺度下的地学表现[J]. 地学前缘, 2020, 27(1): 260-269. |
[14] | 吴孔友, 李偲瑶, 谭明友, 刘化清. 渤海湾盆地义和庄凸起义东地区构造特征及形成与演化[J]. 地学前缘, 2019, 26(2): 194-202. |
[15] | 漆家福, 吴景富, 马兵山, 全志臻, 能源. 南海北部珠江口盆地中段伸展构造模型及其动力学[J]. 地学前缘, 2019, 26(2): 203-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||