[1] |
孙钰, 钟建华, 袁向春, 等. 国内湖相碳酸盐岩研究的回顾与展望[J]. 特种油气藏, 2008, 15(5): 1-6, 106.
|
[2] |
吴因业, 吕佳蕾, 方向, 等. 湖相碳酸盐岩-混积岩储层有利相带分析: 以柴达木盆地古近系为例[J]. 天然气地球科学, 2019, 30(8): 1150-1157.
|
[3] |
朱超, 刘占国, 宋光永, 等. 柴达木盆地英雄岭构造带古近系湖相碳酸盐岩沉积模式、演化与分布[J]. 石油学报, 2022, 43(11): 1558-1567, 1622.
|
[4] |
彭传圣. 湖相碳酸盐岩有利储集层分布: 以渤海湾盆地沾化凹陷沙四上亚段为例[J]. 石油勘探与开发, 2011, 38(4): 435-443.
|
[5] |
闫伟鹏, 杨涛, 李欣, 等. 中国陆上湖相碳酸盐岩地质特征及勘探潜力[J]. 中国石油勘探, 2014, 19(4): 11-17.
|
[6] |
刘圣乾. 东营凹陷西部沙四上亚段湖相碳酸盐岩沉积特征研究[D]. 北京: 中国地质大学(北京), 2018: 1-171.
|
[7] |
刘圣乾, 何幼斌, 姜在兴, 等. 湖相碳酸盐岩礁滩体系沉积特征、主控因素及成因模式: 以东营凹陷西部沙四上亚段为例[J]. 古地理学报, 2023, 25(4): 872-888.
|
[8] |
韩霄. 邵家洼陷沙四段碳酸盐岩储层特征研究[D]. 青岛: 中国石油大学(华东), 2011: 1-114.
|
[9] |
徐宁宁, 邱隆伟, 刘魁元, 等. 沾化凹陷渤南—罗家地区沙四上亚段层序地层及沉积演化研究[J]. 地层学杂志, 2015, 39(2): 223-231.
|
[10] |
毕彩芹, 朱强, 胡志方, 等. 渤海湾盆地济阳坳陷沾车地区沙四上亚段湖相碳酸盐岩储层特征[J]. 石油实验地质, 2017, 39(2): 203-212.
|
[11] |
何青, 杨田, 苏朝光, 等. 渤海湾盆地沾化凹陷沙四上亚段湖相碳酸盐岩储层特征及其控制因素[J]. 矿物岩石, 2023, 43(3): 144-156.
|
[12] |
朱筱敏, 王英国, 钟大康, 等. 济阳坳陷古近系储层孔隙类型与次生孔隙成因[J]. 地质学报, 2007, 81(2): 197-204, 289.
|
[13] |
邱隆伟, 畅通, 张营革, 等. 义东地区碳酸盐岩储层裂缝特征、期次及成因机制[J]. 东北石油大学学报, 2018, 42(5): 16-24, 6.
|
[14] |
韦欣法. 基于OVT域五维地震属性的裂缝预测: 以渤南洼陷沙四上亚段为例[J]. 山东石油化工学院学报, 2023, 37(4): 1-5.
|
[15] |
林会喜, 彭苏萍, 杜文风, 等. 渤南洼陷沙四上亚段碳酸盐岩成藏条件与勘探潜力[J]. 石油与天然气地质, 2013, 34(2): 161-166.
|
[16] |
孔祥鑫. 湖相含碳酸盐细粒沉积岩特征、成因与油气聚集[D]. 北京: 中国地质大学(北京), 2020: 1-217.
|
[17] |
李阳, 李晓光, 张廷山, 等. 细粒岩天文旋回识别及在精细地层划分上的应用: 以辽河西部凹陷雷家地区沙四段为例[J/OL]. 沉积学报, 1-19[2024-09-04]. http://doi.org/10.14027/j.issn.1000-0550.2023.133.
|
[18] |
SHI J Y, JIN Z J, LIU Q Y, et al. Cyclostratigraphy and astronomical tuning of the middle Eocene terrestrial successions in the Bohai Bay Basin, Eastern China[J]. Global and Planetary Change, 2019, 174: 115-126.
|
[19] |
JIN S D, LIU S B, LI Z, et al. Astrochronology of a middle Eocene lacustrine sequence and sedimentary noise modeling of lake-level changes in Dongying Depression, Bohai Bay Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 585: 110740.
|
[20] |
MA Y Q, FAN M J, LI M S, et al. East Asian lake hydrology modulated by global sea-level variations in the Eocene warmhouse[J]. Earth and Planetary Science Letters, 2023, 602: 117925.
|
[21] |
GRADSTEIN F M. The geologic time scale 2012[M]. Amsterdam: Elsevier, 2012.
|
[22] |
WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387.
|
[23] |
GRADSTEIN F M, OGG J G, SCHMITZ M D, et al. Thegeologic time scale 2020[M]. Boston: Elsevier, 2020: 1087-1140.
|
[24] |
SHI J Y, JIN Z J, LIU Q Y, et al. Terrestrial sedimentary responses to astronomically forced climate changes during the Early Paleogene in the Bohai Bay Basin, Eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 502: 1-12.
|
[25] |
刘培, 蒋有录, 刘华, 等. 渤海湾盆地沾化凹陷断层活动与新近系油气成藏关系[J]. 天然气地球科学, 2013, 24(3): 541-547.
|
[26] |
WANG M, WILKINS R W T, SONG G Q, et al. Geochemical and geological characteristics of the Es3L lacustrine shale in the Bonan Sag, Bohai Bay Basin, China[J]. International Journal of Coal Geology, 2015, 138: 16-29.
|
[27] |
NING C X, JIANG Z X, GAO Z Y, et al. Characteristics and controlling factors of reservoir space of mudstone and shale in Es3x in the Zhanhua Sag[J]. Marine and Petroleum Geology, 2017, 88: 214-224.
|
[28] |
赵笑笑, 闫建平, 王敏, 等. 沾化凹陷沙河街组湖相泥页岩夹层特征及测井识别方法[J]. 岩性油气藏, 2022, 34(1): 118-129.
|
[29] |
LI T W, JIANG Z X, XU C L, et al. Effect of sedimentary environment on shale lithofacies in the lower third member of the Shahejie Formation, Zhanhua Sag, Eastern China[J]. Interpretation, 2017, 5(4): T487-T501.
|
[30] |
李志明, 陶国亮, 黎茂稳, 等. 渤海湾盆地济阳坳陷沾化凹陷L69井古近系沙三下亚段取心段页岩油勘探有利层段[J]. 石油与天然气地质, 2019, 40(2): 236-247.
|
[31] |
张建国, 姜在兴, 刘立安, 等. 渤海湾盆地沾化凹陷沙河街组三段下亚段细粒沉积岩岩相特征与沉积演化[J]. 石油学报, 2021, 42(3): 293-306.
|
[32] |
JIU K, DING W L, HUANG W H, et al. Fractures of lacustrine shale reservoirs, the Zhanhua Depression in the Bohai Bay Basin, Eastern China[J]. Marine and Petroleum Geology, 2013, 48: 113-123.
|
[33] |
FENG Y L, JIANG S, HU S Y, et al. Sequence stratigraphy and importance of syndepositional structural slope-break for architecture of Paleogene syn-rift lacustrine strata, Bohai Bay Basin, E. China[J]. Marine and Petroleum Geology, 2016, 69: 183-204.
|
[34] |
张若琳, 金思丁. 渤海湾盆地沾化凹陷罗69井沙三下亚段旋回地层学研究[J]. 中南大学学报(自然科学版), 2021, 52(5): 1516-1531.
|
[35] |
刘华, 袁飞飞, 蒋有录, 等. 沾化凹陷古近系超压特征及其成因机制[J]. 中国石油大学学报(自然科学版), 2021, 45(3): 23-32.
|
[36] |
GUO X W, LIU K Y, HE S, et al. Petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin, China: insight from integrated fluid inclusion analysis and basin modelling[J]. Marine and Petroleum Geology, 2012, 32(1): 21-35.
|
[37] |
姜振学, 李廷微, 宫厚健, 等. 沾化凹陷低熟页岩储层特征及其对页岩油可动性的影响[J]. 石油学报, 2020, 41(12): 1587-1600.
|
[38] |
YI S, HUANG W H, MU N N. Lacustrine carbonates of Paleogene in Zhanhua Sag, Bohai Bay Basin, East China[J]. Carbonates and Evaporites, 2019, 34(3): 1157-1173.
|
[39] |
LI G S, WANG Y B, LU Z S, et al. Geobiological processes of the formation of lacustrine source rock in Paleogene[J]. Science China Earth Sciences, 2014, 57(5): 976-987.
|
[40] |
MA Y Q, FAN M J, LU Y C, et al. Climate-driven paleolimnological change controls lacustrine mudstone depositional process and organic matter accumulation: constraints from lithofacies and geochemical studies in the Zhanhua Depression, Eastern China[J]. International Journal of Coal Geology, 2016, 167: 103-118.
|
[41] |
陈书平, 王毅, 周子勇, 等. 塔里木盆地中: 下寒武统自然伽马测井曲线周期及其在沉积层序划分中的意义[J]. 地质通报, 2020, 39(7): 943-949.
|
[42] |
WANG M, CHEN H H, HUANG C J, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116.
|
[43] |
杨昆昆, 李海燕, 赵汉卿, 等. 西澳大利亚新元古代Browne组—Hussar组旋回地层学研究[J]. 地学前缘, 2023, 30(3): 441-451.
|
[44] |
LI M S, HUANG C J, OGG J, et al. Paleoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China[J]. Earth-Science Reviews, 2019, 189: 125-146.
|
[45] |
THOMSON D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE, 1982, 70(9): 1055-1096.
|
[46] |
KODAMA K P, HINNOV L A. Rock magnetic cyclostratigraphy[M]. Hoboken: Wiley-Blackwell, 2014.
|
[47] |
MANN M E, LEES J M. Robust estimation of background noise and signal detection in climatic time series[J]. Climatic Change, 1996, 33(3): 409-445.
|
[48] |
LI M S, KUMP L R, HINNOV L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179.
|
[49] |
石巨业, 金之钧, 刘全有, 等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质, 2019, 40(6): 1205-1214.
|
[50] |
石巨业, 金之钧, 刘全有, 等. 天文旋回在页岩油勘探及富有机质页岩地层等时对比中的应用[J]. 地学前缘, 2023, 30(4): 142-151.
|
[51] |
王浡, 石巨业, 朱如凯, 等. 天文周期驱动下湖相细粒沉积岩有机质富集模式: 以东营凹陷LY1井沙三下—沙四上亚段为例[J]. 沉积学报, 2025, 43(2): 750-768.
|
[52] |
LASKAR J, FIENGA A, GASTINEAU M, et al. La2010: a new orbital solution for the long-term motion of the Earth[J]. Astronomy & Astrophysics, 2011, 532: A89.
|
[53] |
HAN Y, CAO Y C, LIANG C, et al. Continental climate variability during the middle Eocene global warming[J]. Gondwana Research, 2024, 125: 378-389.
|
[54] |
方旭庆, 钟骑, 张建国, 等. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
|
[55] |
赵勇. 以事件层为约束的黔西六盘水地区晚二叠世煤系高频层序地层[D]. 徐州: 中国矿业大学, 2021: 1-95.
|
[56] |
黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.
|
[57] |
吴怀春, 房强, 张世红, 等. 新生代米兰科维奇旋回与天文地质年代表[J]. 第四纪研究, 2016, 36(5): 1055-1074.
|
[58] |
李山, 吴怀春, 房强, 等. 华南泥盆-石炭系界线剖面旋回地层学研究[J]. 地学前缘, 2022, 29(3): 329-339.
|
[59] |
张念念, 范天来, 黄春菊, 等. 西沙群岛琛科2井珊瑚礁钻孔天文年代标尺的建立及天文周期记录[J]. 地学前缘, 2023, 30(6): 436-450.
|
[60] |
WESTERHOLD T, RÖHL U. Orbital pacing of Eocene climate during the Middle Eocene Climate Optimum and the chron C19r event: missing link found in the tropical western Atlantic[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11): 4811-4825.
|
[61] |
RIVERO-CUESTA L, WESTERHOLD T, ALEGRET L. The Late Lutetian Thermal Maximum (Middle Eocene): first record of deep-sea benthic foraminiferal response[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 109637.
|
[62] |
WESTERHOLD T, RÖHL U, DONNER B, et al. Late Lutetian Thermal Maximum: crossing a thermal threshold in Earth’s climate system?[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(1): 73-82.
|
[63] |
彭军, 于乐丹, 许天宇, 等. 湖相泥页岩地层米氏旋回测井识别及环境响应特征: 以渤海湾盆地济阳坳陷东营凹陷樊页1井Es4scs为例[J]. 石油与天然气地质, 2022, 43(4): 957-969.
|