[1] |
SINGH D, SHARMA N, SINGH C K, et al. Chromium (VI)-induced alterations in physio-chemical parameters, yield, and yield characteristics in two cultivars of mungbean (Vigna radiata L.)[J]. Frontiers in plant science, 2021, 12: 735129.
|
[2] |
LARSEN K K, WIELANDT D, SCHILLER M, et al. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis[J]. Journal of Chromatography A, 2016, 1443: 162-174.
|
[3] |
DE FLORA S, BAGNASCO M, SERRA D, et al. Genotoxicity of chromium compounds. A review[J]. Mutation Research/Reviews in Genetic Toxicology, 1990, 238(2): 99-172.
|
[4] |
ASHRAF A, BIBI I, NIAZI N K, et al. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions[J]. International Journal of Phytoremediation, 2017, 19(7): 605-613.
|
[5] |
SAHA R, NANDI R, SAHA B. Sources and toxicity of hexavalent chromium[J]. Journal of Coordination Chemistry, 2011, 64(10): 1782-1806.
|
[6] |
SPEIR T W, KETTLES H A, PARSHOTAM A, et al. A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr(VI) toxicity to soil biological properties[J]. Soil Biology and Biochemistry, 1995, 27(6): 801-810.
|
[7] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.
|
[8] |
ZHANG X, ZHANG X, LI L, et al. The toxicity of hexavalent chromium to soil microbial processes concerning soil properties and aging time[J]. Environmental Research, 2022, 204: 111941.
|
[9] |
HAANSTRA L, DOELMAN P, VOSHAAR J H O. The use of sigmoidal dose response curves in soil ecotoxicological research[J]. Plant and Soil, 1985, 84(2): 293-297.
|
[10] |
李泽姣, 崔岩山, 蔡晓琳, 等. 土壤铬污染对赤子爱胜蚓抗氧化酶活性的影响[J]. 中国科学院大学学报, 2020, 37(1): 20-26.
|
[11] |
王晓南, 刘征涛, 王婉华, 等. 重金属铬(Ⅵ)的生态毒性及其土壤环境基准[J]. 环境科学, 2014, 35(8): 3155-3161.
|
[12] |
EZE M O, GEORGE S C, HOSE G C. Dose-response analysis of diesel fuel phytotoxicity on selected plant species[J]. Chemosphere, 2021, 263: 128382.
|
[13] |
GILLER K E, WITTER E, MCGRATH S P. Heavy metals and soil microbes[J]. Soil Biology and Biochemistry, 2009, 41(10): 2031-2037.
|
[14] |
OORTS K, BRONCKAERS H, SMOLDERS E. Discrepancy of the microbial response to elevated copper between freshly spiked and long-term contaminated soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3): 845-853.
|
[15] |
CHEN S, MENG W, LI S, et al. Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China[J]. Journal of Integrative Agriculture, 2018, 17(4): 765-774.
|
[16] |
AMIN H, ARAIN B A, AMIN F, et al. Phytotoxicity of chromium on germination, growth and biochemical attributes of Hibiscus esculentus L[J]. American Journal of Plant Sciences, 2013, 4(12): 2431-2439.
|
[17] |
王爱云, 黄姗姗, 钟国锋, 等. 铬胁迫对3种草本植物生长及铬积累的影响[J]. 环境科学, 2012, 33(6): 2028-2037.
|
[18] |
KUPERMAN R G, SICILIANO S D, RÖMBKE J, et al. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes[J]. Integrated environmental assessment and management, 2014, 10(3): 388-400.
|
[19] |
BERRY R III, LÓPEZ-MARTÍNEZ G. A dose of experimental hormesis: when mild stress protects and improves animal performance[J]. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2020, 242: 110658.
|
[20] |
BELZ R G, DUKE S O. Modelling biphasic hormetic dose responses to predict sub-NOAEL effects using plant biology as an example[J]. Current Opinion in Toxicology, 2022, 29: 36-42.
|
[21] |
PATNAIK A R, ACHARY V M M, PANDA B B. Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L[J]. Plant Growth Regulation, 2013, 71: 157-170.
|
[22] |
MORKUNAS I, WOŹNIAK A, MAI V C, et al. The role of heavy metals in plant response to biotic stress[J]. Molecules, 2018, 23(9): 2320.
|
[23] |
UDDIN I, BANO A, MASOOD S. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation[J]. Ecotoxicology and Environmental Safety, 2015, 113: 271-278.
|
[24] |
TALEBI M, TABATABAEI B E S, AKBARZADEH H. Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes[J]. Chemosphere, 2019, 230: 488-497.
|
[25] |
CALABRESE E J, AGATHOKLEOUS E, KOZUMBO W J, et al. Estimating the range of the maximum hormetic stimulatory response[J]. Environmental Research, 2019, 170: 337-343.
|
[26] |
ZHANG X X, LIN Z F. Hormesis-induced gap between the guidelines and reality in ecological risk assessment[J]. Chemosphere, 2020, 243: 125348.
|
[27] |
JARDINE P M, STEWART M A, BARNETT M O, et al. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility[J]. Environmental Science and Technology, 2013, 47(19): 11241-11248.
|
[28] |
LIN X L, SUN Z J, ZHAO L, et al. Toxicity of exogenous hexavalent chromium to soil-dwelling springtail Folsomia candida in relation to soil properties and aging time[J]. Chemosphere, 2019, 224: 734-742.
|
[29] |
LI B R, LIAO P, XIE L, et al. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments[J]. Water Research, 2020, 181: 115923.
|
[30] |
马虹, 王学东, 李金瓶, 等. 土壤理化性质对外源六价铬植物毒性的影响[J]. 生态毒理学报, 2021, 16(4)224-232.
|
[31] |
ALYAZOURI A, JEWSBURY R, TAYIM H, et al. Uptake of chromium by Portulaca oleracea from soil: effects of organic content, pH, and sulphate concentration[J]. Applied and Environmental Soil Science, 2020, 2020: 1-10.
|
[32] |
LOYAUX-LAWNICZAK S, LECOMTE P, EHRHARDT J J. Behavior of hexavalent chromium in a polluted groundwater: redox processes and immobilization in soils[J]. Environmental Science and Technology, 2001, 35(7): 1350-1357.
|