地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 68-80.DOI: 10.13745/j.esf.sf.2022.11.5
所属专题: 印度-欧亚大陆碰撞及其远程效应
• “印度-欧亚大陆碰撞及其远程效应”专栏之六 • 上一篇 下一篇
收稿日期:
2022-03-15
修回日期:
2022-10-31
出版日期:
2023-03-25
发布日期:
2023-01-05
作者简介:
梁光河(1965—),男,副研究员,从事地球物理与大地构造研究。E-mail: lgh@mail.iggcas.ac.cn
基金资助:
LIANG Guanghe1,2(), YANG Weiran3
Received:
2022-03-15
Revised:
2022-10-31
Online:
2023-03-25
Published:
2023-01-05
摘要:
印度大陆板块从位于南半球的冈瓦纳大陆裂解并漂移到当前位置已得到普遍认可,但大陆板块运动的驱动力在大陆漂移学说提出至今一直存在争议,定量估算印度大陆板块运动的驱动力有助于减少争议。我们收集了印度大陆南部被动大陆边缘盆地区域的两条深反射地震勘探剖面,并对其进行了构造地质解译,详细估算了其莫霍面倾角,得到了地壳重力滑移剪切力的大小,用于解释印度大陆运动的动力机制。结果说明,印度大陆板块在地幔上涌形成的倾斜界面上能够产生足够大的重力滑移力驱动印度大陆向北漂移。由此提出一个“地幔上涌和重力滑移”双驱动大陆漂移模型,即大陆板块依靠连续的地幔热上涌和重力滑移力会持续漂移。该模型能够合理解释印度洋上的大陆残片,也能合理解释印度大陆北漂中左旋的成因机制。该重力滑移驱动机制为板块运动提供了一个新的动力模式,为认识板块运动驱动力提供了更为精确的约束信息。
中图分类号:
梁光河, 杨巍然. 驱动印度大陆北漂的动力是什么?[J]. 地学前缘, 2023, 30(2): 68-80.
LIANG Guanghe, YANG Weiran. What forces are driving the Indian subcontinent to drift northward?[J]. Earth Science Frontiers, 2023, 30(2): 68-80.
图1 印度洋盆及周缘大地构造略图(修编自文献[8,26]) 1—马斯克林洋底高原;2—马达加斯加微陆块;3—马达加斯加洋底高原;4—莫桑比克微陆块;5—厄加勒斯微陆块;6—马里昂洋底高原;7—Conrad海隆;8—克洛泽洋底高原;9—Elan Bank微陆块;10—凯尔盖朗洋底高原;11—Broken脊;12—纳多鲁列斯微陆块;13—Cuvier微陆块;14—Exmouth微陆块;15—东经90°海岭;16—查戈斯-拉卡迪夫海岭;LLSVP—超级地幔柱。Ⅰ—西索马里盆地;Ⅱ—马斯克林盆地;Ⅲ—Gop裂谷;Ⅳ—沃顿洋脊;Ⅴ—南海。a—红河走滑断裂;b—实皆走滑断裂;c—苏门答腊走滑断裂;d—苏门答腊—爪哇海沟;e—Arakan前陆冲断带;f—喜马拉雅前陆冲断带;g—恰曼走滑断裂;h—马卡兰增生楔;i—扎格罗斯前陆冲断带;j—东非裂谷系;k—戴维走滑断裂。
Fig.1 Tectonic sketch map of the Indian Ocean basin and surrounding areas. Modified after [8,26].
图2 印度大陆板块周边地震勘探剖面(b据文献[28]) a—剖面平面位置图; b—天然地震勘探接收函数剖面地质解释。
Fig.2 (a) Locations of seismic exploration sections in the southern Indian continental plate and (b) geological interpretation of the seismic receiver function section along CD line (after [28]).
图3 剖面AB的地震勘探剖面及对应的地质解释(剖面位置见图2a)(a据文献[27]) a—人工反射波地震勘探剖面;b—该地震勘探剖面的构造地质解译,红色箭头表示印度陆壳滑移方向。
Fig.3 Seismic exploration profile of artificial reflected wave along line AB (after [27]), and (b) structural geological interpretation of the seismic exploration section (see Fig.2a for section location). Red arrow indicates slip direction of the Indian continental crust.
图4 剖面EF的地震勘探剖面及对应的地质解释(剖面位置见图2a)(a据文献[27]) a—人工反射波地震勘探剖面;b—该地震勘探剖面的构造地质解译,红色箭头表示印度陆壳滑移方向。
Fig.4 Seismic exploration profile of artificial reflected wave along line EF (after [27]), and (b) structural geological interpretation of the seismic exploration section (see Fig.2a for section location). Red arrow indicates slip direction of the Indian continental crust.
剖面模型参数 | 测线AB | 测线EF |
---|---|---|
H | 40 km | 40 km |
h | 12 km | 36 km |
L | 60 km | 70 km |
a | 14° | 27° |
P | 256 MPa | 480 MPa |
表1 重力滑移剪切应力计算表
Table 1 Calculation table of gravity slip shear stress
剖面模型参数 | 测线AB | 测线EF |
---|---|---|
H | 40 km | 40 km |
h | 12 km | 36 km |
L | 60 km | 70 km |
a | 14° | 27° |
P | 256 MPa | 480 MPa |
图6 印度裂离冈瓦纳大陆、漂移和碰撞过程示意图 a—印度陆块裂解初期;b—漂移过程中;c—碰撞俯冲。
Fig.6 Model describing the drift and collision processes during the breakup of India from Gondwana. (a) Initial stage of the breakup. (b) Drift process. (c) Collision-subduction process.
图8 印度区域地质图及德干玄武岩和斯里兰卡成因动力机制示意图(a和b改自文献[8]) a—印度大陆当前受力状态;b—66 Ma印度大陆受力状态,说明德干玄武岩成因和斯里兰卡裂离印度的动力机制。图例说明同图1。
Fig.8 Schematics illustrating the splitting mechanism of the Deccan rift and Sri Lanka before 66 Ma, suggesting the difference in driving forces between the west and east sides of southern India generates sinistral shear to produce two rifts. (a) Current stress status of India. (b) Stress status of India at 66 Ma. Modified from [8].
图10 基于大陆漂移后尾迹特征对东半球主要陆块的来源进行追踪
Fig.10 Tracing the origin of major continents in the Eastern Hemisphere based on wake characteristics of continental drift
[1] | GARY A G. Geomagnetism[M]. Santa Cruz: Press of University of California, 2013. |
[2] |
VEEVERS J J, MCELHINNY M W. The separation of Australia from other continents[J]. Earth-Science Reviews, 1976, 12(2/3): 139-143.
DOI URL |
[3] | WEGENER A. The origins of the continents[J]. Journal of Geodynamics, 2001, 32: 31-63. |
[4] | 陈凌, 王旭, 梁晓峰, 等. 俯冲构造vs.地幔柱构造: 板块运动驱动力探讨[J]. 中国科学: 地球科学, 2020, 50(4): 501-514. |
[5] | AITCHISON J C, ALI J R, DAVIS A M. When and where did India and Asia collide?[J]. Journal of Geophysical Research, 2007, 112: B05423. |
[6] |
SUO Y H, LI S Z, YU S, et al. Morphotectonics and ridge jumpings in Indian Ocean[J]. Geological Journal, 2016, 51(Suppl 1): 624-633.
DOI URL |
[7] |
YOSHIDA M, SANTOSH M. Voyage of the Indian subcontinent since Pangea breakup and driving force of supercontinent cycles: insights on dynamics from numerical modeling[J]. Geoscience Frontiers, 2018, 9: 1279-1292.
DOI URL |
[8] | 李江海, 张华添, 李洪林. 印度洋大地构造背景及其构造演化: 印度洋底大地构造图研究进展[J]. 海洋学报, 2015, 37(7): 1-14. |
[9] |
FORSYTH D, UYEDA S. On the relative importance of the driving forces of plate motion[J]. Geophysical Journal International, 1975, 43: 163-200.
DOI URL |
[10] |
PENNINGTON W D. The effect of oceanic crustal structure on phase changes and subduction[J]. Tectonophysics, 1984, 102: 377-398
DOI URL |
[11] | VAN S J, CONRAD C P, LITHGOW B C. The importance of slab pull and a global asthenosphere to plate motions[J]. Geochemistry, Geophysics, Geosystems, 2012, 13: 13. |
[12] | 万博, 吴福元, 陈凌, 等. 重力驱动的特提斯单向裂解-聚合动力学[J]. 中国科学: 地球科学, 2019, 49(12): 2004-2017. |
[13] | 侯增谦, 郑远川, 卢占武, 等. 青藏高原巨厚地壳: 生长、 加厚与演化[J]. 地质学报, 2020, 94(10): 2797-2815. |
[14] | 孙卫东. “岩浆引擎”与板块运动驱动力[J]. 科学通报, 2019, 64: 2988-3006. |
[15] |
周辉, 邱亮, 颜丹平. 负浮力是板块运动的驱动力吗?关于岩石断裂力学的讨论[J]. 地学前缘, 2020, 27(1): 270-274.
DOI |
[16] |
TORSVIK T H, AMUNDSEN H, HARTZ E H, et al. A Precambrian microcontinent in the Indian Ocean[J]. Nature Geoscience, 2013, 6(3): 223-227.
DOI URL |
[17] |
TUCKER R D, ASHWAL L D, TORSVIK T H. U-Pb geochronology of Seychelles granitoids: a Neoproterozoic continental arc fragment[J]. Earth and Planetary Science Letters, 2001, 187(1): 27-38.
DOI URL |
[18] |
WEIS D, INGLE S, DAMASCENO D, et al. Origin of continental components in Indian Ocean basalts: evidence from Elan Bank(kerguelen Plateau, ODP Leg 183, Site 1137)[J]. Geology, 2001, 29(2): 147-150.
DOI URL |
[19] |
HALPIN J A, CRAWFORD A J, DIREEN N G, et al. Naturaliste Plateau, offshore western Australia: a submarine window into Gondwana assembly and breakup[J]. Geology, 2008, 36(10): 807-810.
DOI URL |
[20] | BEN-AVRAHAM Z, HARTNADY C J H, LEROEX A P. Neotectonic activity on continental fragments in the Southwest Indian Ocean: Agulhas Plateau and Mozambique Ridge[J]. Journal of Geophysical Research: Solid Earth(1978-2012), 1995, 100(B4): 6199-6211. |
[21] | NORTON I O, SELATER J G. A model for the evolution of the Indian Ocean and the breakup of Gondwanaland[J]. Journal of Geophysical Research: Solid Earth(1978-2012), 1979, 84(B12): 6803-6830. |
[22] |
STOREY B C. The role of mantle plumes in continental breakup: case histories from Gondwanaland[J]. Nature, 1995, 377(6547): 301-308.
DOI URL |
[23] |
TODAL A, ELDHOLM O. Continental margin off western India and Deccan large igneous province[J]. Marine Geophysical Researches, 1998, 20(4): 273-291.
DOI URL |
[24] |
DOMINQUE W, STEPHANIE I, DIMITR D, et al. Origin of continental components in Indian Ocean basalts Evidence from Elan Bank (Kerguelen Plateau ODP Leg 183 Site 1137)[J]. Geology, 2001, 29(2): 147-150.
DOI URL |
[25] |
CHENG H, ZHOU H Y, YANG Q H, et al. Jurassic zircons from the Southwest Indian Ridge[J]. Scientific Reports, 2016, 6: 26260. DOI: 10.1038/srep26260.
DOI PMID |
[26] |
梁光河. 印度大陆板块北漂的动力机制研究[J]. 地学前缘, 2020, 27(1): 211-220.
DOI |
[27] | ION. Seismic exploration in the Indian marginal sea[C]//Research report on 76th Annual Meeting of European Geophysicists and Engineers. Amsterdam: Amsterdam Conference & Exhibition Press, 2014: 5-8. |
[28] |
XU Q, ZHAO J M, YUAN X H, et al. Mapping crustal structure beneath southern Tibet: seismic evidence for continental crustal underthrusting[J]. Gondwana Research, 2015, 27(4): 1487-1493.
DOI URL |
[29] |
BOTT M H P. Ridge push and associated plate interior stress in normal and hot spot regions[J]. Tectonophysics, 1991, 200: 17-32.
DOI URL |
[30] |
毛小平, 陆旭凌弘, 王晓明, 等. 周向应力在地壳运动中的作用[J]. 地学前缘, 2020, 27(1): 221-233.
DOI |
[31] | 刘鎏, 魏东平. 中国大陆及邻区板内应力场的数值模拟及动力机制探讨[J]. 地震学报, 2012, 34(6): 727-740. |
[32] | 吕炳全. 海洋地质学概论[M]. 上海: 同济大学出版社, 2008: 1-299. |
[33] |
DIETZ R S. Continent and ocean basin evolution by spreading of the sea floor[J]. Nature, 1961, 190: 854-857.
DOI URL |
[34] |
FRANKE D. Rifting, lithosphere breakup and volcanism: comparison of magma-poor and volcanic rifted margins[J]. Marine and Petroleum Geology, 2013, 43: 63-87.
DOI URL |
[35] | 梁光河, 杨巍然. 从南大西洋裂解过程解密大陆漂移的驱动力[J]. 地学前缘, 2022, 29(1): 1-14. |
[36] | 秦雁群, 张光亚, 计智峰, 等. 印度东部盆地群地质特征、 油气成藏与深水区勘探潜力[J]. 石油勘探与开发. 2017, 44(5): 691-703. |
[37] |
TANG C A, WEBB A A G, MOORE W B, et al. Breaking Earth’s shell into a global plate network[J]. Nature Communications, 2020, 11: 3621.
DOI URL |
[38] |
WILSON J T. Static or mobile Earth: the current scientific revolution[J]. Tectonophysics, 1969, 7(5): 600-601.
DOI URL |
[39] | 马杏垣. 中国岩石圈动力学图集[M]. 北京: 中国地图出版社, 1989. |
[40] |
杨巍然, 姜春发, 张抗, 等. 开合构造: 新全球构造观探索[J]. 地学前缘, 2016, 23(6): 42-60.
DOI |
[41] |
杨巍然, 姜春发, 张抗, 等. 开合旋构造体系及其形成机制探讨: 兼论板块构造的动力学机制[J]. 地学前缘, 2019, 26(1): 337-355.
DOI |
[42] |
杨巍然, 姜春发, 张抗, 等. 运用开合旋构造观探究地球内部是如何运行的[J]. 地学前缘, 2020, 27(1): 204-210.
DOI |
[43] | PAVLENKOVA N I, PAVLENKOVA G A. The upper mantle structure of the northern Eurasia from seismic profiling with nuclear explosions[J]. New Concepts in Global Tectonics Journal, 2017, 5 (1): 6-26. |
[44] |
GUNGY C, PANNING M, ROMANOWICZ B. Global anisotropy and the thickness of continents[J]. Nature, 2003, 422 (6933): 707-711.
DOI URL |
[45] |
SHAPIRO N M, RICZWOLLER M H, MARESCHAL J C, et al. Lithospheric structure of the Canadian Shield inferred from inversion of surface-wave dispersion with thermodynamic a priori constraints[J]. Geological Society, London, Special Publications, 2004, 239 (1): 175-194.
DOI URL |
[46] | 任纪舜, 牛宝贵, 赵磊, 等. 地球系统多圈层构造观的基本内涵[J]. 地质力学学报, 2019, 25 (5): 607-612. |
[1] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[2] | LIANG Guanghe. 南海中央海盆高精度地震勘探揭示的大陆漂移过程[J]. 地学前缘, 2023, 30(5): 430-449. |
[3] | 梁光河. 贝加尔裂谷和汾渭地堑成因与印度-欧亚碰撞的远程效应[J]. 地学前缘, 2023, 30(3): 282-293. |
[4] | 梁光河. 南海中央海盆高精度地震勘探揭示的大陆漂移过程[J]. 地学前缘, 2022, 29(4): 293-306. |
[5] | LIANG Guanghe, YANG Weiran. 从南大西洋裂解过程解密大陆漂移的驱动力[J]. 地学前缘, 2022, 29(1): 328-341. |
[6] | 梁光河, 杨巍然. 从南大西洋裂解过程解密大陆漂移的驱动力[J]. 地学前缘, 2022, 29(1): 316-327. |
[7] | 梁光河. 从东海和南海北部盆地群演化探讨日本大陆板块的形成过程[J]. 地学前缘, 2020, 27(1): 244-259. |
[8] | 梁光河. 印度大陆板块北漂的动力机制研究[J]. 地学前缘, 2020, 27(1): 211-220. |
[9] | 王尧葵,于翔,王珩,赵峰华,张启升. 利用小波阈值法提高地震勘探信号的信噪比[J]. 地学前缘, 2017, 24(3): 319-324. |
[10] | 刘树文,王伟,白翔. 前寒武纪地球动力学(Ⅶ):早期大陆地壳的形成与演化[J]. 地学前缘, 2015, 22(6): 97-108. |
[11] | 胡煜昭,张桂权,王津津,韩润生,周卓铸. 黔西南中部卡林型金矿床冲断褶皱构造的地震 勘探证据及意义[J]. 地学前缘, 2012, 19(4): 63-71. |
[12] | 杨正华,朱光明,张宇航,吴永新. 中国大陆科学钻探井区深部构造地震波反射特征[J]. 地学前缘, 2011, 18(3): 42-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||