地球宜居性的演化与大气和海洋中氧气含量的变化密切相关,特别是大氧化事件(Great Oxidation Event,GOE)和新元古代氧化事件(Neoproterozoic Oxygenation Event,NOE)这两个关键的氧化事件。这些事件不仅影响地球的铁矿物形成过程,还对氮循环产生深远影响,如通过增加氧气浓度促进硝酸盐的生物可利用性。同样,卤素循环,包括卤化和脱卤过程,也可能受到早期地球氧化环境的影响。卤化酶,如卤过氧化物酶和卤化酶,需要氧气来氧化卤族元素并产生有机卤化物。因此,氧化事件可能在非生物产生卤化物以及卤化酶的增加和扩散中扮演了重要角色,从而促进地球上成千上万有机卤化物的生产。随着天然有机卤化物数量的增加,脱卤微生物的进化和脱卤基因(例如,还原脱卤酶基因)的水平转移速率可能加速。以脱卤球菌纲微生物为代表的专性脱卤微生物,包括Dehalococcoides和Dehalogenimonas菌株,被推断在寒武系时期出现。此类微生物在有机卤化物的生物地球化学循环中扮演着关键角色,然而关于它们的起源与进化及脱卤基因的演化信息仍然有限,限制了我们对地质时间尺度上卤素循环的理解。本研究旨在探讨地球宜居性演化过程中卤素的角色,特别是有机卤化物的起源和有机卤呼吸微生物的进化。我们将从地质时间尺度的角度,结合生物地球化学循环的视角,分析有机卤化物的生产、脱卤微生物的分布和演化,以及卤化酶和脱卤酶在地球氧化事件中的作用。通过这项研究,我们希望能够更深入地理解卤素循环在地球宜居性演化中的重要性,并为未来的环境管理和生物修复提供科学依据。
云贵高原地区气候受到不同季风的显著影响,变化趋势较为复杂。为探究该地区环境变化与全球气候变化的内在联系,本研究选取贵州草海湖泊沉积柱2023CH(D)为研究材料,通过高分辨率X射线荧光(XRF)连续扫描和古地磁分析,结合磁化率、粒度及Al、Si、K、Ca等元素的多元统计分析结果,对草海地区0.78 Ma以来的古环境演化进行探讨。研究发现0.78 Ma以来草海的古环境演化可划分为5个阶段:Ⅰ阶段(0.78~0.66 Ma),草海地区气候基本响应全球气候变化;Ⅱ阶段(0.63~0.33 Ma)草海区域气候在全球气候主导的基础上,也明显响应地轴倾角和岁差周期;Ⅲ阶段(0.32~0.22 Ma)为相对温和的冰期凉湿气候,条件适宜碳酸盐岩大量淋溶;Ⅳ阶段(0.21~0.12 Ma)总体呈现冷干气候,早晚两段偏暖湿,物理和化学风化的相对强度均较好地响应岁差周期;Ⅴ阶段(0.12~0.02 Ma)整体趋于冷干,但气候在亚轨道尺度上于冷干-暖湿之间快速振荡,且波动幅度呈增大趋势。草海的气候演化同时受到轨道周期和亚轨道周期影响,不同古环境代用指标对轨道周期的响应存在差异。植被覆盖率受亚洲季风强度的显著影响,其变化主要受全球气候的调控,而物理风化、化学风化相对强度和降雨量对倾角和岁差周期响应更敏感。草海地区气候波动呈现频率更快且更加极端的趋势。总体而言,草海地区气候对全球变化的响应较为复杂,其背后的驱动机制尚需进一步探讨。
在气候变化和强人类活动等多重因素的耦合影响下,活性氮输入过量,加剧了陆地生态系统氮素向水生生态系统的流失,影响了流域水环境质量。识别流域内氮素来源及其转化过程的时空变化特征,已成为防控流失及改善环境质量的首要任务。由于氮的来源多样、生物地球化学过程复杂,且受到诸多因素的耦合影响,限制了对流域系统氮循环的科学认知。在众多的研究方法中,模型模拟因具有灵活性高、系统性强、可多场景模拟分析等诸多优点,已成为揭示流域系统氮迁移转化及动态变化过程的重要手段。本文综述了流域水文模型及流域土壤、地表水与地下水氮素迁移模型的特征,对比了模型的原理、特点与研究范例。结果表明,在影响氮循环的诸多因素中,无序的强人为干扰、极端气候变化已成为扰动流域氮循环的重要因素。水文过程驱动下的水-氮耦合多过程、多机制研究尤为重要,基于此构建的水文生物地球化学模型(如CNMM-DNDC、PIHM等),已成为获取流域系统氮素时空分布规律及其预测分析的重要手段。此外,大数据与过程机理模型相结合已成为揭示氮循环过程中复杂问题的重要途径。通过综合诸多模型对空间格局、人为影响强度的适用性,梳理出针对受强人类干扰的滨海平原河网区氮循环适用模型,以加深对海陆交错带滨海流域地表水、地下水及海水相互作用下的氮循环科学认知,更全面、科学地评估滨海平原河网系统水环境质量与环境效应。
氮循环是全球生物地球化学循环的重要组成部分,人类活动强度升高导致全球活性氮的排放增多,使得氮循环过程失衡,带来一系列生态环境问题。氮是大气气溶胶的重要组分,包括氨基酸在内的大气有机氮对氮循环和环境变化有重要影响。本文对大气中氨基酸的检测方法、成分组成、时空分布、来源和转化规律,以及环境效应等进行了综述。使用液相色谱-质谱、气相色谱-质谱和气相色谱-稳定同位素质谱等仪器可以检测氨基酸的含量、L型和D型氨基酸的含量,以及甘氨酸等单体氨基酸的同位素组成。大气中氨基酸的成分组成、粒径分布和分布规律受采样时间、地理位置和传输过程的影响。甘氨酸通常是大气气溶胶中丰度最高的游离态和结合态氨基酸。氨基酸的来源多样,包括生物和土壤释放、海洋泡沫破裂、生物质燃烧、人为排放,以及二次生成过程等。氨基酸可以影响大气化学过程、参与成云降雨影响气候、作为生物可利用的氮源,以及对人体健康构成威胁。尽管关于大气氨基酸已经开展了很多研究,但依然存在不足,例如,需要标准统一的氨基酸检测方法进行时空对比,结合多种方法进行源解析以提高其结果的准确性,对氨基酸的环境、气候和健康效应缺乏定量评估。同时,从地-气界面科学,乃至地球系统科学的视角分析和解决相关问题,进行全方位、多圈层、跨学科的创新性交叉研究,可以全面理解大气中氨基酸的循环过程和环境影响。