沉积盆地的波状运动是板块内部地壳运动的主要表现形式,沉积盆地的形成演化是地球系统中各种波动过程相互叠加的结果。盆地波动过程分析从沉积速率时间序列中分解出有周期规律的波动曲线,获得盆地演化历史的新认识,主要包括控制盆地演化的波动周期与成藏旋回、盆地地壳升降运动与油气生成及热演化的关系、不整合面的时空分布与剥蚀量恢复、多尺度波动叠加控制下的地层格架时空分布与生储盖层配置关系、隆拗变迁规律与油气藏保存的关系等。盆地波动过程分析技术将成盆、成烃和成藏的研究思路与地壳的波动过程有机融合,可以定量描述油气成藏动态演化过程,对油气勘探实践具有指导作用。沉积盆地波动过程研究未来应着重开展超长天文周期与地球深部动力学旋回驱动的盆地波动机制研究,加强地质证据与数值模拟技术融合,完善盆地波动过程分析方法,推进盆地波动理论成果转化以全面理解圈层相互作用与资源环境效应。充分发挥盆地波动分析技术对油气藏分布规律的预测功能,为油气资源远景评价与勘探提供科学依据。
随着我国对非常规油气勘探理论的完善和技术的提高,页岩油气勘探开发不断获得突破,其战略地位也在不断上升。页岩储层的品质通常是制约其资源潜力的主要因素,其中裂缝是页岩油气富集、高产、稳产的关键。因此裂缝作为富有机质页岩储层重要的储集空间和渗流通道,其相关研究一直都是该领域内的重点。我国页岩储层内天然裂缝大量发育,而非构造裂缝同样比较发育,对页岩油气的富集和保存评价亦具有重要意义。目前对页岩储层构造裂缝的研究比较深入,而对页岩非构造裂缝的研究则相对薄弱。为此本文在充分调研近年来国内外页岩非构造裂缝研究成果的基础上,重点梳理了非构造裂缝的分类、识别与表征、主控因素、期次及演化序列等方面的研究进展。页岩储层非构造裂缝以成因和形态复杂、分布不规则、尺度较小为特征,依据成因机制差异可将其分为成岩缝、异常高压缝、层理缝和表生缝4个大类,它们的识别与表征目前主要还停留在定性描述的阶段;尽管不同类型的非构造缝主控因素存在差异,但均在不同程度上受控于沉积作用、成岩作用、矿物组分及含量、岩石力学性质,呈现出一定的共性。综合分析并指出了页岩储层非构造裂缝研究的关键问题及发展趋势:一是基于页岩储层岩心、薄片、成像测井、常规测井的典型特征,结合先进图像技术,建立不同类型不同尺度非构造裂缝综合有效识别与定量化表征新方法。二是针对页岩储层非构造裂缝的形成发育具有“多成因类型、多控制因素、多期次演化”的特点,并且页岩非构造裂缝的形成与演化与“古温压、古流体、古成岩”过程联系紧密。据此提出了利用页岩储层非构造裂缝中普遍存在的方解石等充填物的流体地球化学、同位素地球化学(C,O,Sr)及微区原位同位素年代学(U-Pb,Sm-Nd)等先进实验分析技术,综合确定页岩储层非构造裂缝形成时间和活动期次及演化序列是未来研究的关键手段。三是由页岩储层非构造裂缝发育程度与单因素主控因素之间的定性-半定量分析,向多个主控因素耦合控制下的非构造裂缝发育程度的定量研究方向发展,即采用数学方法确定不同主控因素对于裂缝发育程度影响的权重,并构建适合我国页岩非构造裂缝发育程度的综合指数与多个主控因素之间的定量关系模型。
含气量是页岩气勘探评价及生产决策中的关键性基础参数,大三段式现场含气量解吸是准确、经济、快捷的首选方法。有别于煤层气思路,页岩含气量在测试原理、方法、技术及仪器等方面均取得了重要进展。无管化测试技术和小三段式测量方法的提出和应用,在提高解吸气测试精度的同时提供了更多有价值的信息。从借鉴于煤层气的条件回推法到多点测量约束拟合法,页岩损失气测量方法更加摆脱了对假设条件的依赖。基于非接触式扭矩传递的方法原理,实现了残余气测试过程中的全程气密。双三段式的含气量准确测量,为总含气量、游吸比、可采系数等含气结构参数的分析和求取奠定了基础,但页岩的可采气量并不是损失气和解吸气的简单加和。高精度含气量现场解吸的应用领域广泛,高精度解吸数据的系统获得、含气结构多参数的预测评价、智能评价技术的实践应用等,是页岩含气量现场解吸发展的基本方向。
美国广泛发育具有经济效益的富氦无机成因天然气田,如其中富氦氮气田甚至可以含有高达10%的氦。原地和周边地区的基底提供充足的氦源而氮气可来自不同圈层,且通常N2/He (He>0.1%)在5~50之间。但是富氦氮气田在美国独特地质环境之外是否也有发现还需要进一步的研究。富氦二氧化碳气田中的氦主要也来自壳源且产量可观。科罗拉多高原上的富氦二氧化碳气田均被认为是来源于新生代晚期的岩浆活动,且该地区岩浆岩具有较高的U、Th含量。地下水溶气脱气-再溶解(Groundwater Gas Stripping and Re-dissolution, GGS-R)模型被普遍认为可以合理解释CO2气藏中氮气、氦等惰性气体的聚集成藏机制。具体来说,幔源CO2载体气充注时将溶解在地下水中的大气源惰性气体与壳源惰性气体脱出成藏,并与地下水达到水/气溶解平衡。虽然不同气田的平衡值各有不同,但是科罗拉多高原上的各气田均显示出相似的范围值,即在相应的储层压力和温度下为0~100 cm3水/cm3气。本文系统分析美国无机成因富氦气藏的氦气生成、运移和聚集机制,讨论氦气在经历氦源岩内游离相扩散初次运移后通过水溶相、气容相集流或是多相渗流方式进行的二次运移及由无机成因载体气N2和CO2共同参与的富集成藏机制,既可为我国氦气勘查提供理论认识依据,也可为二氧化碳地质评价和开发利用及安全封存提供参考。
当前国内外尚无系统的氦气资源评价方法以及针对性的参数取值标准。通过天然气和氦气的成藏要素对比,明确了载体气和壳源氦气的异源同储、同源同储和同源异储3类共生关系,以及壳源氦气成藏的8个关键因素。构建了4类10种氦气资源分级分类评价方法,其中含量法包括5个亚类,统计法包括1个亚类,类比法包括3个亚类,成因法1个亚类,初步解决了氦气资源定量计算的难题。结果表明:高氦气含量的气藏一般为常压及低压气藏,氦气含量与氦源岩类型、铀钍含量和氦源岩规模3个参数呈正向关系,而与离主断裂距离、埋深和生烃强度3个参数呈负相关,适度的基底构造活动有利于氦气释放及富集。基于8类氦气成藏主控因素与氦气含量的定量关系,建立了氦气含量类比法。基于异源同储不同序的原理,构建了氦气资源规模序列法;基于放射性元素衰变释氦机理,建立了氦气成因法。氦气资源评价方法在国内外得到了较为广泛的应用,研究成果将为我国氦气储量规模发现提供了有效支撑。
鉴于我国氦气产业链理论技术需求,针对国内外尚无系统的氦气地质理论认识,缺乏针对性的氦气资源评价方法、参数取值标准,缺乏氦气含量综合准确检测、有利富集区优选方法,无成本指标优化体系及全产业链一体化评价方法等卡点和难点,本文运用地质、地球化学、重磁电震、投资经济等多学科方法及实验技术,集中力量攻克氦气成藏机理、资源评价及资产评价的关键技术瓶颈。研发形成1项地质理论认识和3项关键技术:基于典型富氦气藏解剖、地下流体中“氦-气-水”相平衡及相-势耦合分析,研究提出氦气“水溶相、气容相、游离相”3种主要赋存状态、“集流、渗流、扩散”3种运移机理、“近氦源、邻断裂、低压区、高部位”4项分布富集控制因素,初步建立了基于“优质氦源、高效输导、适宜载体”的氦气“生-运-聚”地质理论认识。针对国内氦气含量检测技术参差不齐、部分准确度差、与国外数据差别大、无针对性的氦气资源评价方法等系列难题,以氦气源及氦气含量为核心,研发氦气含量综合准确检测技术,构建4类10种氦气资源评价方法,解决了氦气资源分级分类评价的技术瓶颈。针对基底氦源分布、岩性识别、通源断裂刻画及含氦储层评价难题,创建了归一化重磁下延方案,研发了基于深度学习的多尺度断裂智能识别技术和不同氦气含量下的气藏声学性质模拟方法,为氦源岩分布预测、通源断裂刻画、含氦储层测井解释评价及预测奠定了基础。通过建立多元控氦的富氦区带与目标优选技术,解决了富氦区带与目标优选难题。针对国内贫氦实际情况,以提氦装置投资和操作成本最小化为目标,采用响应面法建立优化目标与各主要工艺参数的非线性回归模型,建立了氦气全产业链一体化评价技术,初步解决了天然气低成本提氦工艺流程优化的技术需求。研究成果为我国长期、安全、规模利用氦气资源资产提供了有效支撑。
已有的铀成矿模式大多认为,砂岩型铀矿是浅表层含氧水从盆地周邻蚀源区析出携带的外源铀汇入盆地而成矿。本研究发现,鄂尔多斯盆地北部伊盟隆起东部砂岩型铀矿矿集区的地质演化、地貌特征和铀成矿与此成矿模式相悖。其中令人困惑的关键问题是铀成矿物质的来源。对研究区的代表性矿物铀石(形成于强还原环境)及其共生的矿物进行多种地球化学测试分析发现:铀矿区存在淡水低温和中高盐度热液两类截然不同的铀矿化环境;铀成矿年龄主体小于80 Ma。结合盆地煤系气源岩富铀、天然气耗散量巨大和在伊盟隆起发现大面积分布的多种与成熟煤型气耗散有关的蚀变产物和凝析油苗,综合相关模拟实验和测试分析,提出了铀源来自深部的铀成矿新模式:来自盆地中部深层富铀煤系地层中的溶气热流体,在向伊盟隆起东部高部位运移耗散过程中,萃取并携带母岩和沿途围岩富铀地层中的铀元素运移到浅层,随温压降低亮晶方解石与铀石相伴沉淀完成了热液成矿过程,被析出的大规模有机天然气则在浅表层低温成矿同时为铀矿的保存创造了还原环境。此铀成矿新模式拓展了盆地勘探铀矿的思路和领域,提升了多种能源矿产相互作用的成矿效应和综合评价预测的科学性。
天然高铬地下水通常含有较高浓度的硝酸根,然而高铬地下水中硝酸根来源及其联系却并不清楚。本文以陕北黄土高原靖边西南地区的高铬地下水为研究对象,采集了不同深度的地下水和沉积物样品,并测试了地下水样品中的溶解Cr、主要阴阳离子、δ18O、δD、δ18O-NO3、δ15N-NO3等以及沉积物的主要组分和可溶性组分。研究结果表明,研究区地下水的水化学组分主要受水文地质条件的影响。第四系黄土潜水水化学类型主要为HCO3-Na型和HCO3-Ca-Mg型;白垩系环河组、洛河组砂岩承压水水化学类型复杂,主要为HCO3-SO4-Cl-Na-Mg型、HCO3-SO4-Na-Mg型、SO4-Cl-Na-Mg型,地下水处于偏碱性、氧化的环境,具有较高的可溶盐含量。潜水的水化学组分主要来自含水层中硅酸盐风化;承压水水化学组分主要来源于蒸发盐的溶解。垂向上,承压水中硝酸根的平均浓度高于潜水和地表水;地下水硝酸根浓度超标率在研究区从东北到西南呈现高-低-高的趋势;沉积物中可溶性硝酸根与地下水样品在深度上具有相似的变化规律,表明地下水硝酸根主要来源于沉积物。δ18O-NO3和δ15N-NO3结果表明,硝化反应是研究区氮素循环转化的主要过程。在偏碱性氧化性地下水环境中,受溶解氧、硝酸根和硝化反应等多种因素的共同作用,铬趋于从岩石中氧化溶解,迁移进入地下水中。
地热资源是重要的非碳基可再生能源,具有本土能源、稳定可靠、绿色低碳等优势。21世纪以来,我国地热直接利用规模稳居世界首位,特别是中深层地热供暖利用快速增长,成为我国在世界地热产业中的鲜明特色。但与此同时,受限于我国绝大部分地区处于板块内部,东部用能旺盛区尚没有规模中高温地热资源发现,我国地热发电产业发展缓慢。基于对我国地热资源分布特征和开发利用情况的分析,总结归纳了我国中深层地热勘探开发利用技术现状,包括地热系统形成机制、选区评价技术、热储描述技术、可持续开发技术及“取热不耗水”关键工程技术等。地热能若要在能源转型中发挥更重要作用,未来需要向品位更高、应用范围更广的深层地热资源进军。建议持续加强基础理论研究和原始技术创新,尽快摸清我国深层地热资源家底,攻关高温钻完井、复杂结构井、深层热储改造、井下换热和干热岩EGS工程等关键技术,推进“地热+”多能协同,加大示范项目建设和应用市场培育。同时,需要建立健全政策法规制度体系,加大政策支持和管理监督力度,为地热产业健康、规范、可持续发展营造良好的环境。