[1] |
袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1): 1-6.
|
[2] |
LARASON C. An unsung carbon sink[J]. Science, 2011, 334: 886-887.
|
[3] |
章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4): 368-371.
|
[4] |
CAO J H, WU X, HUANG F, et al. Global significance of the carbon cycle in the Karst dynamic system: evidence from geological and ecological processes[J]. China Geology, 2018, 1(1): 17-27.
|
[5] |
FALKOWSKI P, SCHOLES R J, BOYLE E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490): 291-296.
PMID
|
[6] |
CURL R L. Carbon shifted but not sequestered[J]. Science, 2012, 335(6069): 655.
DOI
PMID
|
[7] |
HORWATH W R. The Phanerozoic carbon cycle: CO2 and O2[J]. Vadose Zone Journal, 2006, 5(4): 1155-1156.
|
[8] |
黄奇波. 北方半干旱岩溶区岩溶碳汇过程及效应研究[D]. 武汉: 中国地质大学(武汉), 2019.
|
[9] |
姚锐. 中国岩石风化对大气CO2的汇效应研究[D]. 长沙: 中南大学, 2003.
|
[10] |
BERNER R A. The long-term carbon cycle, fossil fuels and atmospheric composition[J]. Nature, 2003, 426(6964): 323-326.
|
[11] |
BERNER R A, LASAGA A C, GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683.
|
[12] |
LIU Z H. New progress and prospects in the study of rock-weathering-related carbon sinks[J]. Chinese Science Bulletin, 2012, 57(2/3): 95-102.
|
[13] |
YANG M X, LIU Z H, SUN H L, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73: 132-141.
|
[14] |
CHEN B, YANG R, LIU Z H, et al. Coupled control of land uses and aquatic biological processes on the diurnal hydrochemical variations in the five ponds at the Shawan Karst Test Site, China: implications for the carbonate weathering-related carbon sink[J]. Chemical Geology, 2017, 456: 58-71.
|
[15] |
WANG P, HU G, CAO J H. Stable carbon isotopic composition of submerged plants living in Karst water and its eco-environmental importance[J]. Aquatic Botany, 2017, 140: 78-83.
|
[16] |
WANG P, HU Q J, YANG H, et al. Preliminary study on the utilization of Ca2+ and $\mathrm{HCO}_{3}^{-}$ in Karst water by different sources of Chlorella vulgaris[J]. Carbonates and Evaporites, 2014, 29(2): 203-210.
|
[17] |
FARQUHAR G D, LLOYD J, TAYLOR J A, et al. Vegetation effects on the isotope composition of oxygen in atmospheric CO2[J]. Nature, 1993, 363: 439-443.
|
[18] |
CIAIS P, DENNING A S, TANS P P, et al. A three-dimensional synthesis study of δ18O in atmospheric CO2: 1.Surface fluxes[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D5): 5857-5872.
|
[19] |
FANG L, WU Y Y. Bicarbonate uptake experiment show potential Karst carbon sinks transformation into carbon sequestration by terrestrial higher plants[J]. Journal of Plant Interactions, 2022, 17(1): 419-426.
|
[20] |
SERRANO O, GÓMEZ-LÓPEZ D I, SÁNCHEZ-VALENCIA L, et al. Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean[J]. Scientific Reports, 2021, 11(1): 11067.
DOI
PMID
|
[21] |
HAMILTON S E, FRIESS D A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012[J]. Nature Climate Change, 2018, 8: 240-244.
|
[22] |
BAI Y F, COTRUFO M F. Grassland soil carbon sequestration: current understanding, challenges, and solutions[J]. Science, 2022, 377(6606): 603-608.
DOI
PMID
|
[23] |
BELLASSEN V, LUYSSAERT S. Carbon sequestration: managing forests in uncertain times[J]. Nature, 2014, 506(7487): 153-155.
|
[24] |
FERNÁNDEZ P A, HURD C L, ROLEDA M Y. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH[J]. Journal of Phycology, 2014, 50(6): 998-1008.
DOI
PMID
|
[25] |
NAEEM S, HÅKANSSON K, LAWTON J H, et al. Biodiversity and plant productivity in a model assemblage of plant species[J]. Oikos, 1996, 76(2): 259.
|
[26] |
MITTELBACH G G, STEINER C F, SCHEINER S M, et al. What is the observed relationship between species richness and productivity?[J]. Ecology, 2001, 82(9): 2381.
|
[27] |
SONKOLY J, KELEMEN A, VALKÓ O, et al. Both mass ratio effects and community diversity drive biomass production in a grassland experiment[J]. Scientific Reports, 2019, 9(1): 1848.
DOI
PMID
|
[28] |
AUGUSTO L, BOČA A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon[J]. Nature Communications, 2022, 13(1): 1097.
DOI
PMID
|
[29] |
CHEN X L, TAYLOR A R, REICH P B, et al. Tree diversity increases decadal forest soil carbon and nitrogen accrual[J]. Nature, 2023, 618(7963): 94-101.
|
[30] |
YANG Y, TILMAN D, FUREY G, et al. Soil carbon sequestration accelerated by restoration of grassland biodiversity[J]. Nature Communications, 2019, 10(1): 718.
DOI
PMID
|
[31] |
LI Q, SHI X Y, ZHAO Z Q, et al. Ecological restoration in the source region of Lancang River: based on the relationship of plant diversity, stability and environmental factors[J]. Ecological Engineering, 2022, 180: 106649.
|
[32] |
PIELOU E C. The measurement of diversity in different types of biological collections[J]. Journal of Theoretical Biology, 1966, 13: 131-144.
|
[33] |
LUKÁCS B A, SRAMKÓ G, MOLNÁR V A. Plant diversity and conservation value of continental temporary pools[J]. Biological Conservation, 2013, 158: 393-400.
|
[34] |
JIANG H S, JIN Q, LI P P, et al. Different mechanisms of bicarbonate use affect carbon isotope composition in Ottelia guayangensis and Vallisneria denseserrulata in a Karst stream[J]. Aquatic Botany, 2021, 168: 103310.
|
[35] |
肖月娥, 陈开宁, 戴新宾, 等. 太湖两种大型沉水植物无机碳利用效率差异及其机理[J]. 植物生态学报, 2007, 31(3): 490-496.
DOI
|
[36] |
RAVEN J A. Exogenous inorganic carbon sources in plant photosynthesis[J]. Biological Reviews, 1970, 45(2): 167-220.
|
[37] |
BLACK M A, MABERLY S C, SPENCE D H N. Resistances to carbon dioxide fixation in four submerged freshwater macrophytes[J]. New Phytologist, 1981, 89(4): 557-568.
|
[38] |
SMITH F A, WALKER N A. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and $\mathrm{HCO}_{3}^{-}$ and to carbon isotopic discrimination[J]. New Phytologist, 1980, 86(3): 245-259.
|
[39] |
刘玲玲. 三种沉水植物无机碳利用机制研究[D]. 武汉: 华中师范大学, 2011.
|
[40] |
KLAVSEN S K, MADSEN T V, MABERLY S C. Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review[J]. Photosynthesis Research, 2011, 109(1/2/3): 269-279.
|
[41] |
RASCIO N. The underwater life of secondarily aquatic plants: some problems and solutions[J]. Critical Reviews in Plant Sciences, 2002, 21(4): 401-427.
|
[42] |
ZHANG Y Z, YIN L Y, JIANG H S, et al. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)[J]. Photosynthesis Research, 2014, 121(2/3): 285-297.
|
[43] |
POSCHENRIEDER C, FERNÁNDEZ J A, RUBIO L, et al. Transport and use of bicarbonate in plants: current knowledge and challenges ahead[J]. International Journal of Molecular Sciences, 2018, 19(5): 1352.
|
[44] |
熊志斌, 王万海, 玉屏, 等. 板寨地下河大型水生植物调查及其固碳评价[J]. 热带地理, 2018, 38(4): 557-564.
DOI
|
[45] |
CHAPIN F S III, MATSON P A, VITOUSEK P M. Carbon inputs to ecosystems[M]//Principles of terrestrial ecosystem ecology. New York: Springer, 2011: 123-156.
|
[46] |
余俊琪, 白冰, 李光超, 等. 岩溶地下水补给河流沉积物理化性质及有机碳来源解析[J]. 水生生物学报, 2022, 46(12): 1900-1908.
|
[47] |
LOREAU M, HECTOR A. Partitioning selection and complementarity in biodiversity experiments[J]. Nature, 2001, 412(6842): 72-76.
|
[48] |
ROSCHER C, TEMPERTON V M, SCHERER-LORENZEN M, et al. Overyielding in experimental grassland communities-irrespective of species pool or spatial scale[J]. Ecology Letters, 2005, 8(4): 419-429.
|
[49] |
BESSLER H, TEMPERTON V M, ROSCHER C, et al. Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs[J]. Ecology, 2009, 90(6): 1520-1530.
PMID
|
[50] |
ZHOU Z, SUN O J, HUANG J, et al. Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem[J]. Functional Ecology, 2006, 20(5): 753-762.
DOI
PMID
|
[51] |
ZHANG J, EKBLAD A, SIGURDSSON B D, et al. The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-Arctic grassland[J]. Soil Biology and Biochemistry, 2020, 147: 107826.
|
[52] |
LI B B, GAO G Y, LUO Y Q, et al. Carbon stock and sequestration of planted and natural forests along climate gradient in water-limited area: a synthesis in the China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2023, 333: 109419.
|
[53] |
JOHNSON D, VACHON J, BRITTON A J, et al. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs[J]. The New Phytologist, 2011, 190(3): 740-749.
|
[54] |
WILSEY B J, POLLEY H W. Reductions in grassland species evenness increase dicot seedling invasion and spittle bug infestation[J]. Ecology Letters, 2002, 5(5): 676-684.
|
[55] |
KIRWAN L, LÜSCHER A, SEBASTIÀ M T, et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites[J]. Journal of Ecology, 2007, 95(3): 530-539.
|
[56] |
NIJS I, ROY J. How important are species richness, species evenness and interspecific differences to productivity? A mathematical model[J]. Oikos, 2000, 88(1): 57-66.
|
[57] |
MULDER C P H, BAZELEY-WHITE E, DIMITRAKOPOULOS P G, et al. Species evenness and productivity in experimental plant communities[J]. Oikos, 2004, 107(1): 50-63.
|
[58] |
HILLEBRAND H, BENNETT D M, CADOTTE M W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes[J]. Ecology, 2008, 89(6): 1510-1520.
PMID
|