地学前缘 ›› 2024, Vol. 31 ›› Issue (5): 358-376.DOI: 10.13745/j.esf.sf.2024.2.6

• “综合生态系统碳循环与碳中和”专栏 • 上一篇    下一篇

岩溶碳汇原理、过程与计量

曹建华1,2,3(), 杨慧1,2,3, 黄芬1,2,3, 张春来1,2,3, 张连凯4, 朱同彬1,2,3, 周孟霞1,2,3, 袁道先1,2,3   

  1. 1.中国地质科学院 岩溶地质研究所 自然资源部、 广西岩溶动力学重点实验室, 广西 桂林 541004
    2.联合国教科文组织国际岩溶研究中心/岩溶动力系统与全球变化国际联合研究中心, 广西 桂林 541004
    3.广西平果喀斯特生态系统国家野外科学观测研究站, 广西 平果 531406
    4.中国地质调查局 昆明自然资源综合调查中心, 云南 昆明 650111
  • 收稿日期:2023-08-12 修回日期:2024-01-16 出版日期:2024-09-25 发布日期:2024-10-11
  • 作者简介:曹建华(1963—),男,研究员,博士生导师,主要从事岩溶碳循环过程观测与机理的研究工作。E-mail: cjianhua@mail.cgs.gov.cn
  • 基金资助:
    国家自然科学基金国际(地区)合作与交流项目(42361144885);广西重点研发计划项目(桂科AB22035004);广西科技基地和人才专项(桂科AD20297090);广西科技基地和人才专项(桂科AD19245176);广西科技基地和人才专项(桂科AD21196001);桂林市科技计划项目(2020010905);桂林市科技计划项目(2020010403);自然资源部/广西岩溶动力学实验室开放基金(KDL&Guangxi202002)

The principle, process, and measurement of karst carbon sink

CAO Jianhua1,2,3(), YANG Hui1,2,3, HUANG Fen1,2,3, ZHANG Chunlai1,2,3, ZHANG Liankai4, ZHU Tongbin1,2,3, ZHOU Mengxia1,2,3, YUAN Daoxian1,2,3   

  1. 1. MNR and Guangxi Key Laboratory of Karst Dynamics, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
    2. International Research Center on Karst Under the Auspices of UNESCO/National Center for International Research on Karst Dynamic System and Global Change, Guilin 541004, China
    3. Pingguo, Guangxi Karst Ecosystem, National Observation and Research Station, Pingguo 531406, China
    4. Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming 650111, China
  • Received:2023-08-12 Revised:2024-01-16 Online:2024-09-25 Published:2024-10-11

摘要:

岩溶生态系统碳循环由陆地生物碳循环(植物光合作用驱动)和岩溶碳循环(碳酸盐岩溶解风化驱动)两部分组成。岩溶碳循环与陆地生物碳循环存在协同作用,岩溶碳循环过程对陆地淡水生态系统产生显著影响。岩溶碳汇主要发生在岩溶和生物紧密联系的植物根系-土壤-岩石相互融合的表层岩溶带,在快速交互的地下水系统和地表水系统中发生迁移转化过程。当前流域岩溶碳汇计量存在至少3个方面的问题:(1)全岩溶流域中来源于碳酸盐岩的碳和来源于大气/土壤中的碳比例不清;(2)部分岩溶流域碳酸盐岩和硅酸盐岩风化溶解产生碳汇的量如何区分;(3)水生植物光合作用生产的内源有机碳与陆地生态系统的外源有机碳的贡献大小如何。建议岩溶碳汇计算要以流域为单元,通过确定流域边界,查明地质结构,分析土地覆被配置,揭示岩溶碳循环及碳汇效应影响的主控因子,建立反演和正演模型,估算流域岩溶和生物碳汇的贡献,填补岩溶碳汇服务价值评估的空白。

关键词: 岩溶碳汇, 岩溶碳循环, 碳迁移转化, 碳汇计量, 模型构建

Abstract:

The carbon cycle in karst ecosystems consists of two parts: biological carbon cycle (driven by plant photosynthesis) and karst carbon cycle (driven by carbonate dissolution and weathering). There is a synergistic effect between karst carbon cycle and terrestrial biological carbon cycle, which significantly impacts terrestrial freshwater ecosystems. Karst carbon sinks primarily occur in the surface karst zone, where plant roots, soil, and rocks intermingle. Their migration and transformation processes take place in both groundwater and surface water systems. There are at least three uncertainties in the measurement of karst carbon sinks within a watershed: changes in the proportion of carbon derived from carbonate rocks versus that from the atmosphere/soil across the entire karst watershed, differentiation of carbon sinks produced by the weathering and dissolution of carbonate versus silicate rocks in certain karst watersheds, and distinctions between endogenous organic carbon produced by aquatic plant photosynthesis and exogenous organic carbon from terrestrial ecosystems. It is recommended to use the watershed as a unit, define watershed boundaries, identify geological structures, analyze land cover configurations, reveal the main controlling factors of the karst carbon cycle and carbon sink effects, establish inversion and forward models, and address gaps in the service functions of karst carbon sinks.

Key words: karst carbon sink, karst carbon cycle, carbon migration-carbon conversion, carbon sink measurement, model construction

中图分类号: