地学前缘 ›› 2024, Vol. 31 ›› Issue (1): 327-339.DOI: 10.13745/j.esf.sf.2024.1.70
收稿日期:
2023-01-05
修回日期:
2023-03-27
出版日期:
2024-01-25
发布日期:
2024-01-25
通信作者:
*陶士振(1966—),男,企业高级专家,教授级高级工程师,博士生导师,主要从事氦气地球化学成藏与综合评价研究。E-mail: 作者简介:
杨怡青(1991—),女,博士后,主要从事氦气地质地球化学研究。E-mail: yangyiq@petrochina.com.cn
基金资助:
YANG Yiqing(), TAO Shizhen*(
), CHEN Yue
Received:
2023-01-05
Revised:
2023-03-27
Online:
2024-01-25
Published:
2024-01-25
摘要:
美国广泛发育具有经济效益的富氦无机成因天然气田,如其中富氦氮气田甚至可以含有高达10%的氦。原地和周边地区的基底提供充足的氦源而氮气可来自不同圈层,且通常N2/He (He>0.1%)在5~50之间。但是富氦氮气田在美国独特地质环境之外是否也有发现还需要进一步的研究。富氦二氧化碳气田中的氦主要也来自壳源且产量可观。科罗拉多高原上的富氦二氧化碳气田均被认为是来源于新生代晚期的岩浆活动,且该地区岩浆岩具有较高的U、Th含量。地下水溶气脱气-再溶解(Groundwater Gas Stripping and Re-dissolution, GGS-R)模型被普遍认为可以合理解释CO2气藏中氮气、氦等惰性气体的聚集成藏机制。具体来说,幔源CO2载体气充注时将溶解在地下水中的大气源惰性气体与壳源惰性气体脱出成藏,并与地下水达到水/气溶解平衡。虽然不同气田的平衡值各有不同,但是科罗拉多高原上的各气田均显示出相似的范围值,即在相应的储层压力和温度下为0~100 cm3水/cm3气。本文系统分析美国无机成因富氦气藏的氦气生成、运移和聚集机制,讨论氦气在经历氦源岩内游离相扩散初次运移后通过水溶相、气容相集流或是多相渗流方式进行的二次运移及由无机成因载体气N2和CO2共同参与的富集成藏机制,既可为我国氦气勘查提供理论认识依据,也可为二氧化碳地质评价和开发利用及安全封存提供参考。
中图分类号:
杨怡青, 陶士振, 陈悦. 美国典型富氦无机成因气田中氦气地质特征与聚集机制[J]. 地学前缘, 2024, 31(1): 327-339.
YANG Yiqing, TAO Shizhen, CHEN Yue. Geological characteristics and mechanism of helium accumulation in typical abiotic helium-rich gas fields in the United States[J]. Earth Science Frontiers, 2024, 31(1): 327-339.
气田类型 | 气田名称 | 所属盆地 | 天然气储量/(108m3) | 层位 | 平均氦含量/% | R/Ra |
---|---|---|---|---|---|---|
CO2气田 | Big Piney-La Barge | Green River盆地 | 48 988.1 | 密西西比系 | 0.50 | 0.050~0.070 |
McElmo Dome | Paradox盆地 | 8 495.1 | 密西西比系 | 0.20 | 0.057~0.215 | |
St. Johns | Holbrook盆地 | 2 520.2 | 二叠系 | 0.63 | 0.394~0.455 | |
Doe Canyon | Paradox盆地 | 1 444.2 | 密西西比系 | 0.78 | 0.150 | |
Sheep Mountain | Raton盆地 | 877.8 | 白垩系、侏罗系 | 0.10 | 0.963 | |
McCallum | North Park盆地 | 792.9 | 下白垩统 | 0.28 | 0.402 | |
Kevin Dome | Williston盆地 | 3 964.4 | 泥盆系 | 0.29 | ||
N2气田 | Pinta Dome | Holbrook盆地 | 1.85 (总产量) | 二叠系 | 7.20 | 0.20~0.22 |
Harley Dome | Unita-Piceance盆地 | 未完全开发 | 侏罗系 | 3.90 | 0.11 |
表1 美国典型无机成因富氦天然气田表(数据来源于文献[4,12-13])
Table 1 Typical helium-rich abiotic natural gas fields in the United States (sourced from [4,12-13])
气田类型 | 气田名称 | 所属盆地 | 天然气储量/(108m3) | 层位 | 平均氦含量/% | R/Ra |
---|---|---|---|---|---|---|
CO2气田 | Big Piney-La Barge | Green River盆地 | 48 988.1 | 密西西比系 | 0.50 | 0.050~0.070 |
McElmo Dome | Paradox盆地 | 8 495.1 | 密西西比系 | 0.20 | 0.057~0.215 | |
St. Johns | Holbrook盆地 | 2 520.2 | 二叠系 | 0.63 | 0.394~0.455 | |
Doe Canyon | Paradox盆地 | 1 444.2 | 密西西比系 | 0.78 | 0.150 | |
Sheep Mountain | Raton盆地 | 877.8 | 白垩系、侏罗系 | 0.10 | 0.963 | |
McCallum | North Park盆地 | 792.9 | 下白垩统 | 0.28 | 0.402 | |
Kevin Dome | Williston盆地 | 3 964.4 | 泥盆系 | 0.29 | ||
N2气田 | Pinta Dome | Holbrook盆地 | 1.85 (总产量) | 二叠系 | 7.20 | 0.20~0.22 |
Harley Dome | Unita-Piceance盆地 | 未完全开发 | 侏罗系 | 3.90 | 0.11 |
图1 美国主要富/含CO2天然气田分布(a)及北美克拉通与地质构造单元(b)(据文献[6,10]修改)
Fig.1 (a) Distribution of major CO2 rich natural gas fields in the United States; (b) North American Craton and geotectonic units. Modified after [6,10].
图2 美国科罗拉多高原/四角地区富CO2天然气田分布(据文献[4]修改)
Fig.2 Distribution of CO2-rich natural gas fields in the Four Corners area, Colorado Plateau, U.S.A. Modified after [4].
气田参数 | 各气田参数情况 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
McElmo Dome | Doe Canyon | St. Johns | Big Piney-La Barge | |||||||
产区面积/km2 | 824.4 | 331.8 | 890.3 | 2 630.5 | ||||||
天然气储量/(108 m3) | 8 495.1 | 1 444.2 | 2 520.2 | 48 988.1 | ||||||
氦气储量/(108 m3) | 17.0 | 11.3 | 15.9 | 244.9 | ||||||
储层 | 密西西比纪Leadville 组白云岩, 三叠纪Shinarump组砾岩 | 密西西比纪Leadville 组石灰岩 | 二叠纪Supai组 Arkosic砂岩、 断裂的前寒武纪基底 | 密西西比纪Madison 组石灰岩、 白云岩、砂岩 | ||||||
平均深度/m | 2 000~2 545 | 2 730 | 462 | 4 750~5 500 | ||||||
产层厚度/m | 21~45 | 18 | 23 | 85 | ||||||
孔隙度/% | 3.5~25(平均11) | 10 | 10~15 | 6~12(平均9) | ||||||
渗透率/(10-3 μm2) | 23 | 10 | 10~50 | |||||||
圈闭类型 | 构造-岩性地层圈闭 | 构造圈闭 | 构造圈闭 | 构造圈闭 | ||||||
盖层 | Paradox组盐岩/ 硬石膏 | Paradox组盐岩/ 硬石膏 | 盐岩/硬石膏 | Sabkha砂砾岩、 喀斯特碎屑岩 | ||||||
气藏压力/psi | 2 580(497 m以深) | 3 960 | 508 | 6 585~7 625 | ||||||
所属盆地 | Paradox盆地 | Paradox盆地 | Holbrook盆地 | Green River盆地 | ||||||
采气方式 | 压力、较少水驱 | 气顶驱动 | 气顶驱动 | |||||||
He含量 | 0.20% | 0.78% | 0.63% | 0.50% | ||||||
R/Ra | 0.057~0.215 | 0.150 | 0.394~0.455 | 0.050~0.070 | ||||||
CO2含量 | 98.2% | 91.7% | 92.6% | 79.6% | ||||||
N2含量 | 1.6% | 6.1% | 6.5% | 4.8% | ||||||
CH4含量 | >0.2% | 1.2% | 0.05% | 12.7% |
表2 美国主要富氦CO2天然气田参数表(数据来源于文献[6,12])
Table 2 Basic information on major helium-rich CO2 natural gas fields in the United States. Compiled from [6,12].
气田参数 | 各气田参数情况 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
McElmo Dome | Doe Canyon | St. Johns | Big Piney-La Barge | |||||||
产区面积/km2 | 824.4 | 331.8 | 890.3 | 2 630.5 | ||||||
天然气储量/(108 m3) | 8 495.1 | 1 444.2 | 2 520.2 | 48 988.1 | ||||||
氦气储量/(108 m3) | 17.0 | 11.3 | 15.9 | 244.9 | ||||||
储层 | 密西西比纪Leadville 组白云岩, 三叠纪Shinarump组砾岩 | 密西西比纪Leadville 组石灰岩 | 二叠纪Supai组 Arkosic砂岩、 断裂的前寒武纪基底 | 密西西比纪Madison 组石灰岩、 白云岩、砂岩 | ||||||
平均深度/m | 2 000~2 545 | 2 730 | 462 | 4 750~5 500 | ||||||
产层厚度/m | 21~45 | 18 | 23 | 85 | ||||||
孔隙度/% | 3.5~25(平均11) | 10 | 10~15 | 6~12(平均9) | ||||||
渗透率/(10-3 μm2) | 23 | 10 | 10~50 | |||||||
圈闭类型 | 构造-岩性地层圈闭 | 构造圈闭 | 构造圈闭 | 构造圈闭 | ||||||
盖层 | Paradox组盐岩/ 硬石膏 | Paradox组盐岩/ 硬石膏 | 盐岩/硬石膏 | Sabkha砂砾岩、 喀斯特碎屑岩 | ||||||
气藏压力/psi | 2 580(497 m以深) | 3 960 | 508 | 6 585~7 625 | ||||||
所属盆地 | Paradox盆地 | Paradox盆地 | Holbrook盆地 | Green River盆地 | ||||||
采气方式 | 压力、较少水驱 | 气顶驱动 | 气顶驱动 | |||||||
He含量 | 0.20% | 0.78% | 0.63% | 0.50% | ||||||
R/Ra | 0.057~0.215 | 0.150 | 0.394~0.455 | 0.050~0.070 | ||||||
CO2含量 | 98.2% | 91.7% | 92.6% | 79.6% | ||||||
N2含量 | 1.6% | 6.1% | 6.5% | 4.8% | ||||||
CH4含量 | >0.2% | 1.2% | 0.05% | 12.7% |
图3 美国科罗拉多高原北部富氦气田及氦含量(a)与McElmo Dome气田Leadville石灰岩顶面构造图(b)(据文献[4,12]修改)
Fig.3 (a) Helium-rich gas fields and helium content in the northern Colorado Plateau, United States, and (b) top surface map of the Leadville limestone at McElmo Dome gas field. Modified after [4,12].
图5 St. Johns气田二叠纪Supai组顶面构造图(a)与22-1X井富氦Supai组测井结果(b)(据文献[4,17]修改)
Fig.5 He-rich Permian Supai formation in the St. Johns Dome gas field. (a) Top surface map. (b) Logging results from well 22-1X. Modified after [4,17].
图6 Big Piney-La Barge气田地质特征(据文献[12,20]修改) a—BP-LB气田位置;b—气田Madison组顶面构造图与CO2含量分布等值线图;c—盆地地层岩性柱状图。
Fig.6 Big Piney-La Barge gas field. (a) Tectonic location. (b) Top surface map of the Madison Formation overlaying with CO2 contour map. (c) Lithologic of the Green River basin strata. Modified after [12,20].
气田参数 | 气田参数情况 | ||||
---|---|---|---|---|---|
Pinta Dome | Harley Dome | ||||
产区面积/km2 | 19.9 | 1.3 | |||
储层 | 二叠纪Coconino砂岩 | 侏罗纪Entrada砂岩 | |||
深度/m | 311~334 | 236 | |||
产层厚度/m | 21 | 27 | |||
孔隙度/% | 14 | ||||
渗透率/(10-3 μm2) | 110 | 低 | |||
圈闭类型 | 地层-构造圈闭 | 构造圈闭 | |||
盖层 | Moenkopi组页岩 | Mancos组页岩 | |||
气藏压力/psi | 124 | 154 | |||
所属盆地 | Holbrook盆地 | Unita-Piceance盆地 | |||
采气方式 | 气顶驱动 | ||||
He含量/% | 地区平均7.2 生产井平均8.5 | 地区平均3.9 生产井平均7 | |||
R/Ra | 0.20~0.22 | 0.11 | |||
CO2含量/% | 0.46 | 0.50 | |||
N2含量/% | 90.0 | 62.1 | |||
CH4含量/% | 0.22 | 31.50 |
表3 美国主要富氦N2天然气田参数表(数据来源于文献[5,12-13,23])
Table 3 Basic information on major helium-rich NG natural gas fields in the United States. Complied from [5,12-13,23].
气田参数 | 气田参数情况 | ||||
---|---|---|---|---|---|
Pinta Dome | Harley Dome | ||||
产区面积/km2 | 19.9 | 1.3 | |||
储层 | 二叠纪Coconino砂岩 | 侏罗纪Entrada砂岩 | |||
深度/m | 311~334 | 236 | |||
产层厚度/m | 21 | 27 | |||
孔隙度/% | 14 | ||||
渗透率/(10-3 μm2) | 110 | 低 | |||
圈闭类型 | 地层-构造圈闭 | 构造圈闭 | |||
盖层 | Moenkopi组页岩 | Mancos组页岩 | |||
气藏压力/psi | 124 | 154 | |||
所属盆地 | Holbrook盆地 | Unita-Piceance盆地 | |||
采气方式 | 气顶驱动 | ||||
He含量/% | 地区平均7.2 生产井平均8.5 | 地区平均3.9 生产井平均7 | |||
R/Ra | 0.20~0.22 | 0.11 | |||
CO2含量/% | 0.46 | 0.50 | |||
N2含量/% | 90.0 | 62.1 | |||
CH4含量/% | 0.22 | 31.50 |
图7 富氦氮气田Harley Dome及其附近富氦烷烃气田氦气运移成藏模型(据文献[23]修改)
Fig.7 Helium migration model of the Harley Dome helium-rich N2 field and nearby He-rich natural gas fields. Modified after [23].
图8 Pinta Dome气田氦气分布特征(据文献[22,26]修改) a—Coconino组顶面构造与氦含量分布平面图;b—测井与岩性地层图。
Fig.8 Pinta Dome gas field. (a) Helium contour map. (b) Well logging data and simplified lithostratigraphic column. Modified after [22,26].
δ15N/‰ | 天然气中可能的N2来源 |
---|---|
-19~19 | 成熟和低成熟的沉积有机质 |
-2~10 | 成熟的沉积有机质 |
+1~+2 | 深部壳源或幔源 |
0(N2/Ar为38~84) | 大气来源 |
+1~+4 | 变质产生的含铵盐黏土矿物 |
+4~+18 | 高成熟的沉积有机质 |
表4 不同δ15N对应天然气中可能的N2来源(据文献[27]整理)
Table 4 Classification of probable N2 sources in natural gas fields based on δ15N values. Compiled from [27].
δ15N/‰ | 天然气中可能的N2来源 |
---|---|
-19~19 | 成熟和低成熟的沉积有机质 |
-2~10 | 成熟的沉积有机质 |
+1~+2 | 深部壳源或幔源 |
0(N2/Ar为38~84) | 大气来源 |
+1~+4 | 变质产生的含铵盐黏土矿物 |
+4~+18 | 高成熟的沉积有机质 |
[1] |
CADY H P, MCFARLAND D F. The occurrence of helium in natural gas and the composition of natural gas[J]. The occurrence of helium in natural gas and the composition of natural gas[J]. Journal of the American Chemical Society, 1907, 29(11): 1523-1536.
DOI URL |
[2] |
BALLENTINE C J, LOLLAR B S. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA[J]. Geochimica et Cosmochimica Acta, 2002, 66(14): 2483-2497.
DOI URL |
[3] | DANABALAN D. Helium: exploration methodology for a strategic resource[D]. Durham: Durham University, 2017. |
[4] |
GILFILLAN S M V, BALLENTINE C J, HOLLAND G, et al. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1174-1198.
DOI URL |
[5] | WISEMAN T, ECKELS M T. Proven and hypothetical helium resources in Utah[R/OL]. (2020-06-29) [2024-01-09]. https://doi.org/10.34191/mp-174. |
[6] | NICHOLS C, EPPINK J, HEIDRICK T L, et al. Subsurface sources of CO2 in the contiguous United States[R/OL]. (2014-03-05) [2024-01-09]. https://doi.org/10.2172/1503261. |
[7] |
DUMITRU T A, DUDDY I R, GREEN P F. Mesozoic-Cenozoic burial, uplift, and erosion history of the west-central Colorado Plateau[J]. Geology, 1994, 22: 499-4502.
DOI URL |
[8] |
ALLEN P A, VERLANDER J A, BURGESS P M, et al. Jurassic giant erg deposits, flexure of the US continental interior, and the timing of the onset of cordilleran shortening[J]. Geology, 2000, 28: 159-162.
DOI URL |
[9] | BLAKEY R C. Pennsylvanian-Jurassic sedimentary basins of the Colorado Plateau and southern Rocky Mountains[J]. Sedimentary Basins of the World, 2008, 5: 245-296. |
[10] | ANDREW D M. The sedimentary basins of the United States and Canada[M]//BURGESS P M. Phanerozoic evolution of the sedimentary cover of the North American Craton. 2nd ed. Amsterdam: Elsevier, 2019: 39-75. |
[11] | HOUSTONG W S, WRAY L L, MORELAND P G. The Paradox Basin Revisited-new developments in petroleum systems and basin analysis[M]//KLUTH C F, DUCHENE H R. Late Pennsylvanian and Early Permian structural geology and tectonic history of the Paradox Basin and Uncompahgre uplift, Colorado and Utah. Denver: RMAG, 2009: 178-197. |
[12] | TEDESCO S A. Geology and production of helium and associated gases[M]. Amsterdam: Elsevier, 2022. |
[13] | BRENNAN S T, EAST J A, DENNEN K O, et al. Dataset of helium concentrations in United States wells: US Geological Survey Data Release[R/OL]. (2021-05-18) [2024-01-09]. https://doi.org/10.5066/P92QL79J. |
[14] | ADAMS J G, GONZALES D, DARRAH T. Application of noble gas isotopic signatures at McElmo Dome-Doe Canyon field to investigate CO2 source and system characterization[C/OL]// AAPG annual convention and exhibition 2015, Denver: Rocky Mountain association of geologists, 2015. https://www.searchanddiscovery.com/abstracts/html/2015/90216ace/abstracts/2095645.html |
[15] | CAPPA J A, RICE D D. Carbon dioxide in Mississippian rocks of the Paradox Basin and adjacent areas, Colorado, Utah, New Mexico, and Arizona[R]. Denver: USGPO; US Geological Survey Information Services, 1995. |
[16] | STEVENS S H, TYE B S. Natural CO2 analogs for carbon sequestration[R/OL]. (2005-07-31) [2024-01-09]. https://doi.org/10.2172/902517. |
[17] | RAUZI S L. Carbon dioxide in the St. John's Springerville area, Apache county, Arizona[R]. Tucson: Arizona Geological Survey, 1999. |
[18] |
KIPFER R, AESCHBACH-HERTIG W, PEETERS F, et al. Noble gas in lakes and ground waters[J]. Review in Mineralogy and Geochemistry, 2002, 47: 615-689.
DOI URL |
[19] |
BECKER T P, LYNDS R. A geologic deconstruction of one of the world's largest natural accumulations of CO2, Moxa arch, southwestern Wyoming[J]. AAPG Bulletin, 2012, 96(9): 1643-1664.
DOI URL |
[20] | STILWELL D P. CO2 resources of the Moxa arch and the Madison reservoir[C]// Gas resources of Wyoming; 40th annual field conference guidebook, Casper: Wyoming Geological Association, 1989: 105-115. |
[21] | MERRILL M D, HUNT A. Updated regional and field scale He accumulation geochemistry, La Barge Platform, WY[C/OL]// AAPG Rocky Mountain section annual meeting 2017, Billings: Montana Geological Society, 2017. https://www.searchanddiscovery.com/pdfz/abstracts/pdf/2017/90301rms/abstracts/ndx_merrill.pdf.html. |
[22] | RAUZI S L. Review of helium production and potential in Arizona[R]. Tucson: Arizona Geological Survey, 2003. |
[23] | MCDOWELL B, MIL KOV A V, ANDERSON D S. The helium system: a modification of the petroleum system for inert gases[C/OL]// AAPG annual convention and exhibition 2017. Houston: American Association of Petroleum Geologists, 2017. https://www.searchanddiscovery.com/abstracts/html/2017/90291ace/abstracts/2612903.html. |
[24] | USGS Uinta-Piceance Assessment Team. Petroleum systems and geologic assessment of oil and gas in the Uinta-Piceance province, Utah and Colorado[M/OL]//JOHNSON R C, ROBERTS S B. The Mesaverde total petroleum system, Uinta-Piceance province, Utah and Colorado. Denver: USGS Digital Data Series DDS-69-B, 2003. https://pubs.usgs.gov/dds/dds-069/dds-069-b/REPORTS/Chapter_7.pdf. |
[25] | CASE J E. Geologic map of the Northwestern part of the Uncompahgre uplift, Grand county, Utah, and Mesa county, Colorado, with Emphasis on Proterozoic rocks[R/OL]. (1991) [2024-01-09]. https://doi.org/10.3133/i2088. |
[26] | HALFORD D T. Isotopic analyses of helium from wells located in the Four Corners area, Southwestern, US[D]. Golden: Colorado School of Mines, 2018. |
[27] |
ZHU Y, SHI B, FANG C. The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations[J]. Chemical Geology, 2000, 164(3/4): 321-330.
DOI URL |
[28] | HOLLOWAY J M, DAHLGREN R A. Nitrogen in rock: occurrences and biochemical implications[J]. Global Biogeochemical Cycles, 2002, 16 (4): 65-1-65-17. |
[29] | BROWN A A. PS Formation of high helium gases: A guide for explorationists[C]// AAPG annual convention and exhibition 2010, New Orleans: American association of petroleum geologists, 2010. https://www.searchanddiscovery.com/pdfz/documents/2010/80115brown/ndx_brown.pdf.html. |
[30] | BROWN A A. Possible origins for low thermal maturity, high-nitrogen natural gases[J]. Geochemistry, 2017, 47: 481-538. |
[31] |
BOUDOU J, ESPITALIE J. Molecular nitrogen from coal pyrolysis: kinetic modelling[J]. Chemical Geology, 1995, 126(3/4): 319-333.
DOI URL |
[32] |
ADER M, BOUDOU J P, JAVOY M, et al. Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (USA) and from the Bramsche Massif (Germany)[J]. Organic Geochemistry, 1998, 29(1/2/3): 315-323.
DOI URL |
[33] |
BROWN A A. Origin of helium and nitrogen in the Panhandle-Hugoton field of Texas, Oklahoma, and Kansas, United States[J]. AAPG Bulletin, 2019, 103(2): 369-403.
DOI URL |
[34] | JENDEN P D, KAPLAN I R. Origin of natural gas in Sacramento basin, California[J]. AAPG Bulletin, 1989, 73(4): 431-453. |
[35] | CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. New York: CRC Press, 2013. |
[1] | 康凤新, 郑婷婷, 史猛, 隋海波, 徐蒙, 江海洋, 钟振楠, 秦鹏, 张保建, 赵季初, 马哲民, 崔洋, 李嘉龙, 段晓飞, 白通, 张平平, 姚松, 刘肖, 史启鹏, 王学鹏, 杨海涛, 陈京鹏, 刘琲琲. 山东省地热资源赋存规律及其富集机制[J]. 地学前缘, 2024, 31(6): 67-94. |
[2] | 吴义平, 王青, 陶士振, 王建君, 李谦, 张宁宁, 吴晓智, 李浩武, 王晓波. 壳源氦气成藏主控因素及资源评价方法研究[J]. 地学前缘, 2024, 31(1): 340-350. |
[3] | 陶士振, 吴义平, 陶小晚, 王晓波, 王青, 陈胜, 高建荣, 吴晓智, 刘申奥艺, 宋连腾, 陈荣, 李谦, 杨怡青, 陈悦, 陈秀艳, 陈燕燕, 齐雯. 氦气地质理论认识、资源勘查评价与全产业链一体化评价关键技术[J]. 地学前缘, 2024, 31(1): 351-367. |
[4] | 侯方辉, 朱晓青, 张训华, 吴志强, 郭兴伟, 祁江豪, 温珍河, 王保军, 孟祥君. 中国东部海域地质特征及一些重要大地构造界线在海区延伸的地质地球物理证据[J]. 地学前缘, 2022, 29(2): 281-293. |
[5] | 夏祥标, 李光明, 张林奎, 张志, 曹华文, 梁维. 西藏错那洞穹隆祥林铍锡多金属矿地质特征及找矿方向[J]. 地学前缘, 2022, 29(1): 93-106. |
[6] | 韩瑶, 张传恒, 李利阳, 蒋先强, 刘子荟. 皖南前南华纪浅变质岩系的沉积地质特征及其构造古地理意义[J]. 地学前缘, 2020, 27(4): 282-293. |
[7] | 任志, 周涛发, 袁峰, 张怀东. 安徽大别山地区沙坪沟超大型斑岩钼矿床成矿系统特征[J]. 地学前缘, 2020, 27(2): 353-372. |
[8] | 曹烨,唐尧,要梅娟,商朋强,邹振东,邱国玉,熊先孝. 中国硫矿资源预测模型及资源潜力分析[J]. 地学前缘, 2018, 25(3): 179-195. |
[9] | 王吉平,朱敬宾,李敬,商朋强,熊先孝,高永璋,张浩,张扬,祁才吉,朱颜农. 中国萤石矿预测评价模型与资源潜力分析[J]. 地学前缘, 2018, 25(3): 172-178. |
[10] | 孙鹏慧,李景朝,肖克炎,刘长纯. 中国菱镁矿成矿地质特征与资源潜力[J]. 地学前缘, 2018, 25(3): 159-171. |
[11] | 杨毅恒,曾乐,邓凡,胡建中. 中国铬铁矿资源潜力分析及找矿方向[J]. 地学前缘, 2018, 25(3): 138-147. |
[12] | 李童斐,夏庆霖,汪新庆,刘岳,常力恒,冷帅. 中国稀土矿资源成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 95-106. |
[13] | 夏庆霖,汪新庆,常力恒,刘壮壮,甘雪婷. 中国锡矿床时空分布特征与潜力评价[J]. 地学前缘, 2018, 25(3): 59-66. |
[14] | 夏庆霖,汪新庆,刘壮壮,李童斐,冯磊. 中国钨矿成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 50-58. |
[15] | 牛翠祎,刘烊,张岱. 中国金矿成矿地质特征、预测模型及资源潜力[J]. 地学前缘, 2018, 25(3): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||