地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 163-178.DOI: 10.13745/j.esf.sf.2025.10.24

• 污染水文地质 • 上一篇    下一篇

硫自养反硝化技术工程应用现状及展望

陈男1,2(), 陈方鑫3, 彭彤3, 李冶平2,4, 孙大鑫1, 原源1, 刘程田1, 梅朵朵1, 詹永恒1, 汪小童1, 冯传平1,*()   

  1. 1.中国地质大学(北京) 水资源与环境学院, 北京市水资源与环境工程重点实验室, 北京 100083
    2.东北地质科技创新中心, 辽宁 沈阳 110000
    3.北京涞澈科技发展有限公司, 北京 100089
    4.黑龙江省自然资源调查院, 黑龙江省“两大平原”地下水资源开发与保护重点实验室, 黑龙江 哈尔滨 150036
  • 收稿日期:2025-06-25 修回日期:2025-10-10 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *冯传平(1963—),男,博士,教授,博士生导师,主要从事水污染控制技术和环境净化材料研究。E-mail:fengcp@cugb.edu.cn
  • 作者简介:陈 男(1983—),女,教授,博士生导师,主要从事地下水污染修复技术和环境污染地球化学研究。E-mail:chennan@cugb.edu.cn
  • 基金资助:
    中国地质调查局东北地质科技创新中心区创基金项目(QCJJ2023-41)

Current status and future prospects of sulfur-based autotrophic denitrification technology in engineering applications

CHEN Nan1,2(), CHEN Fangxin3, PENG Tong3, LI Yeping2,4, SUN Daxin1, YUAN Yuan1, LIU Chengtian1, MEI Duoduo1, ZHAN Yongheng1, WANG Xiaotong1, FENG Chuanping1,*()   

  1. 1. School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China
    2. Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
    3. Beijing Laiche Technology Development Co., Ltd, Beijing 100089, China
    4. Natural Resources Survey Institute of Heilongjiang Province, Key Laboratory of Groundwater Resources Development and Protection in the Songnen-Sanjiang Plain of Heilongjiang Province, Harbin 150036, China
  • Received:2025-06-25 Revised:2025-10-10 Online:2026-01-25 Published:2025-11-10

摘要:

微生物反硝化是硝酸盐去除的重要方法。然而,传统的异养反硝化技术依赖外部有机碳源的添加,存在处理成本高、污泥产量大及碳排放强度高等问题。在“双碳”背景之下,寻找经济且环境友好的生物处理技术,成为低碳处理硝酸盐废水的核心问题。硫自养反硝化技术使用还原态硫代替有机碳源作为电子供体驱动生物反硝化过程。与传统异养过程相比,大幅降低碳排放强度和外源碳需求。本文基于硫自养反硝化技术原理与工程应用现状,系统比较了复合型硫基材料和高硫型材料的脱氮性能,讨论了实际应用中硫自养滤料的功能特性。并基于各类反应器在结构配置、物料特性、接触方式、微生物群落富集机制等方面差异,阐释了不同类型反应器在实际应用中的性能特征。在厘清反应体系运行特性的基础上,本文综述了自养反硝化技术在市政、工业、生态等脱氮领域工程规模的应用,探讨了硫自养反硝化技术在市政污水、高盐废水及人工湿地等多场景高效脱氮应用现状,量化了硫自养技术的运行成本及环境效益。最后,展望了未来硫自养反硝化的研究方向,通过材料开发、基因工程靶向调控推动工艺标准化以突破工程化瓶颈,最终构建低碳高效的硫自养脱氮技术体系,以期为硫自养反硝化技术的工程化应用提供重要参考。

关键词: 微生物代谢, 反应器构建, 硫基复合材料, 低碳脱氮, 工程应用

Abstract:

Biological denitrification is a key technology for nitrate removal. However, conventional heterotrophic denitrification requires external organic carbon sources, which leads to high operational costs, excessive sludge production, and significant carbon emissions. In the context of the “Dual Carbon Goals,” selecting cost-effective and environmentally sustainable biological treatment technologies has become a crucial strategy for low-carbon nitrate wastewater remediation. Sulfur-autotrophic denitrification (SAD) utilizes elemental sulfur or sulfides as electron donors to support microbial nitrate reduction. Compared to traditional heterotrophic processes, SAD significantly reduces carbon emissions and the need for external carbon sources. This review systematically examines the principles and engineering applications of SAD, compares the nitrogen removal performances of composite sulfur-based materials and high-sulfur-content substrates, and discusses the functional roles of sulfur-autotrophic filter media in practical implementations. By elucidating differences in reactor configurations, material properties, contact mechanisms, and microbial community enrichment strategies, this work highlights the performance characteristics of various reactor types in real-world scenarios. Based on an analysis of system operational features, the review summarizes full-scale applications of autotrophic denitrification in municipal, industrial, and ecological contexts. It explores the current use of SAD in areas such as municipal wastewater treatment, high-salinity effluents, and constructed wetlands, and provides a quantitative evaluation of its operational costs and environmental benefits. Finally, the review outlines future research directions for SAD, emphasizing material development and genetic engineering-based targeted regulation to standardize processes and overcome engineering bottlenecks. The ultimate goal is to establish a low-carbon, high-efficiency sulfur-autotrophic nitrogen removal system, offering valuable insights for the engineering application of SAD technology.

Key words: microbial metabolism, reactor construction, sulfur-based composite materials, low-carbon nitrogen removal, engineering application

中图分类号: