

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 163-178.DOI: 10.13745/j.esf.sf.2025.10.24
陈男1,2(
), 陈方鑫3, 彭彤3, 李冶平2,4, 孙大鑫1, 原源1, 刘程田1, 梅朵朵1, 詹永恒1, 汪小童1, 冯传平1,*(
)
收稿日期:2025-06-25
修回日期:2025-10-10
出版日期:2026-01-25
发布日期:2025-11-10
通信作者:
*冯传平(1963—),男,博士,教授,博士生导师,主要从事水污染控制技术和环境净化材料研究。E-mail:fengcp@cugb.edu.cn
作者简介:陈 男(1983—),女,教授,博士生导师,主要从事地下水污染修复技术和环境污染地球化学研究。E-mail:chennan@cugb.edu.cn
基金资助:
CHEN Nan1,2(
), CHEN Fangxin3, PENG Tong3, LI Yeping2,4, SUN Daxin1, YUAN Yuan1, LIU Chengtian1, MEI Duoduo1, ZHAN Yongheng1, WANG Xiaotong1, FENG Chuanping1,*(
)
Received:2025-06-25
Revised:2025-10-10
Online:2026-01-25
Published:2025-11-10
摘要:
微生物反硝化是硝酸盐去除的重要方法。然而,传统的异养反硝化技术依赖外部有机碳源的添加,存在处理成本高、污泥产量大及碳排放强度高等问题。在“双碳”背景之下,寻找经济且环境友好的生物处理技术,成为低碳处理硝酸盐废水的核心问题。硫自养反硝化技术使用还原态硫代替有机碳源作为电子供体驱动生物反硝化过程。与传统异养过程相比,大幅降低碳排放强度和外源碳需求。本文基于硫自养反硝化技术原理与工程应用现状,系统比较了复合型硫基材料和高硫型材料的脱氮性能,讨论了实际应用中硫自养滤料的功能特性。并基于各类反应器在结构配置、物料特性、接触方式、微生物群落富集机制等方面差异,阐释了不同类型反应器在实际应用中的性能特征。在厘清反应体系运行特性的基础上,本文综述了自养反硝化技术在市政、工业、生态等脱氮领域工程规模的应用,探讨了硫自养反硝化技术在市政污水、高盐废水及人工湿地等多场景高效脱氮应用现状,量化了硫自养技术的运行成本及环境效益。最后,展望了未来硫自养反硝化的研究方向,通过材料开发、基因工程靶向调控推动工艺标准化以突破工程化瓶颈,最终构建低碳高效的硫自养脱氮技术体系,以期为硫自养反硝化技术的工程化应用提供重要参考。
中图分类号:
陈男, 陈方鑫, 彭彤, 李冶平, 孙大鑫, 原源, 刘程田, 梅朵朵, 詹永恒, 汪小童, 冯传平. 硫自养反硝化技术工程应用现状及展望[J]. 地学前缘, 2026, 33(1): 163-178.
CHEN Nan, CHEN Fangxin, PENG Tong, LI Yeping, SUN Daxin, YUAN Yuan, LIU Chengtian, MEI Duoduo, ZHAN Yongheng, WANG Xiaotong, FENG Chuanping. Current status and future prospects of sulfur-based autotrophic denitrification technology in engineering applications[J]. Earth Science Frontiers, 2026, 33(1): 163-178.
| 序号 | 名称 | 进水类型与 应用场景 | 容积负荷/kg | 主要电子 供体及含量/% | 粒径/mm | 应用 成熟度 | 文献 |
|---|---|---|---|---|---|---|---|
| 1 | 硫基复合材料(NSAD) | 多场景下的硝酸盐污染水体 | 0.08~0.58 | 硫黄/ 55~85 | 3~6 | 商用 | [ |
| 2 | 自养缓释活性滤料 | 工业园区污水 | 0.64 | 硫黄/ 70~80 | 2~3 | 商用 | [ |
| 3 | 新型硫-缓释碳源混合填料(SRC) | 市政生活污水 | 0.21 | 单质硫/50 | 小试 | [ | |
| 4 | 硫包覆铁碳微电解填料 | 垃圾渗滤液处理厂/膜反应器 | 0.30 | 单质硫、铁 | 5 | 小试 | [ |
| 5 | 硫自养反硝化功能生物载体材料 | 市政生活污水/膜反应器 | 0.20 | 硫黄、硫粉、 硫化钠/ 7.8 | 小试 | [ | |
| 6 | 硫黄-高分子导电生物硫自养材料 | 市政生活污水/流化床 | 0.002 1 | 硫黄 / 3 | 3~5 | 小试 | [ |
| 7 | 五合一复合硫自养反硝化材料 | 市政生活污水/人工湿地 | 0.017 | 单质硫、硫代硫 酸钠/ 18 | ≥5 | 实验室 | [ |
| 8 | 富铁泥碳-硫自养反硝化材料 | 市政生活污水/填充床 | 0.045 | 单质硫 / 80 | 3~6 | 实验室 | [ |
| 9 | 铁碳基复合硫自养反硝化填料 | 二级生化污水 | 0.44 | 黄铁矿、硫黄/50 | 3~5 | 实验室 | [ |
| 10 | 硫化-纳米零价铁(S-nZVI) | 地表水/人工湿地 | 0.021 | 单质硫、铁、 Fe2+/ 30~67 | 实验室 | [ | |
| 11 | 石蜡强化硫-菱铁矿集成复合材料 | 污水处理厂二级出水 | 0.019 | 单质硫、菱铁矿/25 | 3~5 | 实验室 | [ |
表1 实验室规模的硫自养反硝化材料性能对比
Table 1 Performance comparison of sulfur autotrophic denitrification materials at laboratory scale
| 序号 | 名称 | 进水类型与 应用场景 | 容积负荷/kg | 主要电子 供体及含量/% | 粒径/mm | 应用 成熟度 | 文献 |
|---|---|---|---|---|---|---|---|
| 1 | 硫基复合材料(NSAD) | 多场景下的硝酸盐污染水体 | 0.08~0.58 | 硫黄/ 55~85 | 3~6 | 商用 | [ |
| 2 | 自养缓释活性滤料 | 工业园区污水 | 0.64 | 硫黄/ 70~80 | 2~3 | 商用 | [ |
| 3 | 新型硫-缓释碳源混合填料(SRC) | 市政生活污水 | 0.21 | 单质硫/50 | 小试 | [ | |
| 4 | 硫包覆铁碳微电解填料 | 垃圾渗滤液处理厂/膜反应器 | 0.30 | 单质硫、铁 | 5 | 小试 | [ |
| 5 | 硫自养反硝化功能生物载体材料 | 市政生活污水/膜反应器 | 0.20 | 硫黄、硫粉、 硫化钠/ 7.8 | 小试 | [ | |
| 6 | 硫黄-高分子导电生物硫自养材料 | 市政生活污水/流化床 | 0.002 1 | 硫黄 / 3 | 3~5 | 小试 | [ |
| 7 | 五合一复合硫自养反硝化材料 | 市政生活污水/人工湿地 | 0.017 | 单质硫、硫代硫 酸钠/ 18 | ≥5 | 实验室 | [ |
| 8 | 富铁泥碳-硫自养反硝化材料 | 市政生活污水/填充床 | 0.045 | 单质硫 / 80 | 3~6 | 实验室 | [ |
| 9 | 铁碳基复合硫自养反硝化填料 | 二级生化污水 | 0.44 | 黄铁矿、硫黄/50 | 3~5 | 实验室 | [ |
| 10 | 硫化-纳米零价铁(S-nZVI) | 地表水/人工湿地 | 0.021 | 单质硫、铁、 Fe2+/ 30~67 | 实验室 | [ | |
| 11 | 石蜡强化硫-菱铁矿集成复合材料 | 污水处理厂二级出水 | 0.019 | 单质硫、菱铁矿/25 | 3~5 | 实验室 | [ |
| 反应器类型 | 形式 | 优势 | 挑战 | 反应体系 | 去除率/% | (kg | 适用场景 | 应用成熟度 | 引文 |
|---|---|---|---|---|---|---|---|---|---|
| 固定床 反应器(PBR) | 生物滤池 | 可调整性强,抗冲击能力强 | 传质效率低,易堵塞 | 微生物附着在固定载体表面,硫(粒径2~8 mm)作为电子供体,硝酸盐作为电子受体 | 85.3~98.0 | 0.19~1.36 | 市政污水,工业废水,生活污水 | 中试规模、 工程应用 | [27,102-109] |
| 生物过滤器 | 95.0~99.2 | 0.75~1.30 | 实验室规模 | [48,110-115] | |||||
| 流化床反应器 (FBR) | 流化床反应器/移动床生物膜反应器 (MBBR) | 传质效率高,脱氮效率高 | 能耗高,抗冲击能力较弱 | 微生物附着在悬浮载体表面,硫(粒径以μm计)作为电子供体,硝酸盐作为电子受体 | 84.5~98.0 | 0.18~0.61 | 高浓度硝酸盐废水,生活污水 | 实验室规模 | [49,69,116] |
| 膜生物反应器 (MBR) | 膜生物反应器(MBR) | 高效进行固液分离,有效截留微生物 | 投资成本高,膜组件污染 | 生物降解与膜过滤协同 | 68.0~95.4 | 0.28~4.00 | 市政污水,工业废水 | 实验室规模 | [50,73,76,117-118] |
| 活性污泥反应器 | 升流式厌氧污泥床(UASB)/厌氧折流板反应(ABR) | 无需设置填料,容积利用率高 | 耐冲击能力差,会出现污泥流失 | 没有固定载体,利用活性污泥降解污染物 | 约100.0 | 0.79~1.53 | 高浓度硫酸盐工业废水 | 实验室规模 | [51,78] |
| 土壤系统反应器 | 土壤渗滤系统(SIS) | 基建投资少,运行管理简单 | 占地面积较大,效率受环境影响 | 微生物附着在土壤上,硫作为电子供体,硝酸盐作为电子受体 | 70.3~88.6 | 0.21~0.53 | 生活污水 | 实验室规模 | [53,85-86] |
| 人工湿地(CW) | 69.2~96.4 | 污水处理厂尾水,河湖生态修复 | 中试规模、试验性工程应用 | [52,87-89,93] | |||||
| 电化学反应器 | 生物电化学 反应器(BER) | 反应条件温和,环境友好 | 成本高,受电极材料限制 | 外接电源,利用微生物与电化学过程耦合 | 57.0~97.2 | 0.01~0.08 | 污水处理厂尾水 | 实验室规模 | [54,97,119] |
| 微生物燃料电池(MFC) | 利用微生物催化降解并转化为电能 | 58.7~100.0 | 0.07~0.09 | 含硫化物工业废水 | 实验室规模 | [98-99] |
表2 不同类型SAD反应器优势、挑战及性能
Table 2 Advantages, challenges and performance of different types of SAD reactorse
| 反应器类型 | 形式 | 优势 | 挑战 | 反应体系 | 去除率/% | (kg | 适用场景 | 应用成熟度 | 引文 |
|---|---|---|---|---|---|---|---|---|---|
| 固定床 反应器(PBR) | 生物滤池 | 可调整性强,抗冲击能力强 | 传质效率低,易堵塞 | 微生物附着在固定载体表面,硫(粒径2~8 mm)作为电子供体,硝酸盐作为电子受体 | 85.3~98.0 | 0.19~1.36 | 市政污水,工业废水,生活污水 | 中试规模、 工程应用 | [27,102-109] |
| 生物过滤器 | 95.0~99.2 | 0.75~1.30 | 实验室规模 | [48,110-115] | |||||
| 流化床反应器 (FBR) | 流化床反应器/移动床生物膜反应器 (MBBR) | 传质效率高,脱氮效率高 | 能耗高,抗冲击能力较弱 | 微生物附着在悬浮载体表面,硫(粒径以μm计)作为电子供体,硝酸盐作为电子受体 | 84.5~98.0 | 0.18~0.61 | 高浓度硝酸盐废水,生活污水 | 实验室规模 | [49,69,116] |
| 膜生物反应器 (MBR) | 膜生物反应器(MBR) | 高效进行固液分离,有效截留微生物 | 投资成本高,膜组件污染 | 生物降解与膜过滤协同 | 68.0~95.4 | 0.28~4.00 | 市政污水,工业废水 | 实验室规模 | [50,73,76,117-118] |
| 活性污泥反应器 | 升流式厌氧污泥床(UASB)/厌氧折流板反应(ABR) | 无需设置填料,容积利用率高 | 耐冲击能力差,会出现污泥流失 | 没有固定载体,利用活性污泥降解污染物 | 约100.0 | 0.79~1.53 | 高浓度硫酸盐工业废水 | 实验室规模 | [51,78] |
| 土壤系统反应器 | 土壤渗滤系统(SIS) | 基建投资少,运行管理简单 | 占地面积较大,效率受环境影响 | 微生物附着在土壤上,硫作为电子供体,硝酸盐作为电子受体 | 70.3~88.6 | 0.21~0.53 | 生活污水 | 实验室规模 | [53,85-86] |
| 人工湿地(CW) | 69.2~96.4 | 污水处理厂尾水,河湖生态修复 | 中试规模、试验性工程应用 | [52,87-89,93] | |||||
| 电化学反应器 | 生物电化学 反应器(BER) | 反应条件温和,环境友好 | 成本高,受电极材料限制 | 外接电源,利用微生物与电化学过程耦合 | 57.0~97.2 | 0.01~0.08 | 污水处理厂尾水 | 实验室规模 | [54,97,119] |
| 微生物燃料电池(MFC) | 利用微生物催化降解并转化为电能 | 58.7~100.0 | 0.07~0.09 | 含硫化物工业废水 | 实验室规模 | [98-99] |
| 项目 | 参数 | 硫自养反硝化滤池 | 上向流滤池 | 降流式反硝化深床滤池 |
|---|---|---|---|---|
| 功能填料 参数 | 功能填料 | 还原态硫; | 陶粒/石英砂 | 天然海砂 |
| 粒径范围 | 粒径:3~20 mm | 4~9 mm(陶粒);0.8~2 mm, 不均匀系数小于2(石英砂) | 1.7~3.35 mm | |
| 机械强度 | 磨损率和破碎率之和应不大于6%, 简压强度应不小于 4 MPa | 压碎值≤10%,磨损率≤3% | 莫氏硬度6~7 | |
| 设计参数 | 容积负荷 | 0.1~0.8 kg N/(m3·d) | 0.8~1.2 kg N/(m3·d) | 0.3~1.6 kg N/(m3·d) |
| 滤速 | 上向流≤10 m/h 下向流≤8 m/h | 8~20 m/h | 4.5~8 m/h | |
| 气洗强度 | 14~30 L/(m2·s) | 12~14 L/(m2·s) | 20~30.5 L/(m2·s) | |
| 水洗强度 | 6~9 L/(m2·s) | 5~6 L/(m2·s)(陶粒); 2~3 L/(m2·s)(石英砂) | 3.8~4.4 L/(m2·s) | |
| 气水联合气洗强度 | 14~30 L/(m2·s) | 12~14 L/(m2·s) | 20~30.5 L/(m2·s) | |
| 气水联合水洗强度 | 6~9 L/(m2·s) | 5~6 L/(m2·s)(陶粒); 2~3 L/(m2·s)(石英砂) | 3.8~4.4 L/(m2·s) | |
| 反洗周期 | 反冲洗周期宜为 3~15 d | 应根据滤池进出水水质、运行期终水头损失以及水厂运行管理等因素,通过试验或参照相似条件下已有滤池的经验确定 | 过滤水头1.5~2.4 m | |
| 反洗时间组合 | 气洗2~5 min-气水联合 5~10 min-水洗5~10 min | 气洗2~3 min-气水联合 4~6 min-水洗3~4 min | 气洗3~5 min-气水联合 10~15 min-水洗5~10 min | |
| 参考文献 | [ | [ | [ |
表3 硫自养反硝化滤池与传统反硝化滤池设计参数对比
Table 3 Comparison of design parameters between sulfur autotrophic denitrification filter and traditional denitrification filtere
| 项目 | 参数 | 硫自养反硝化滤池 | 上向流滤池 | 降流式反硝化深床滤池 |
|---|---|---|---|---|
| 功能填料 参数 | 功能填料 | 还原态硫; | 陶粒/石英砂 | 天然海砂 |
| 粒径范围 | 粒径:3~20 mm | 4~9 mm(陶粒);0.8~2 mm, 不均匀系数小于2(石英砂) | 1.7~3.35 mm | |
| 机械强度 | 磨损率和破碎率之和应不大于6%, 简压强度应不小于 4 MPa | 压碎值≤10%,磨损率≤3% | 莫氏硬度6~7 | |
| 设计参数 | 容积负荷 | 0.1~0.8 kg N/(m3·d) | 0.8~1.2 kg N/(m3·d) | 0.3~1.6 kg N/(m3·d) |
| 滤速 | 上向流≤10 m/h 下向流≤8 m/h | 8~20 m/h | 4.5~8 m/h | |
| 气洗强度 | 14~30 L/(m2·s) | 12~14 L/(m2·s) | 20~30.5 L/(m2·s) | |
| 水洗强度 | 6~9 L/(m2·s) | 5~6 L/(m2·s)(陶粒); 2~3 L/(m2·s)(石英砂) | 3.8~4.4 L/(m2·s) | |
| 气水联合气洗强度 | 14~30 L/(m2·s) | 12~14 L/(m2·s) | 20~30.5 L/(m2·s) | |
| 气水联合水洗强度 | 6~9 L/(m2·s) | 5~6 L/(m2·s)(陶粒); 2~3 L/(m2·s)(石英砂) | 3.8~4.4 L/(m2·s) | |
| 反洗周期 | 反冲洗周期宜为 3~15 d | 应根据滤池进出水水质、运行期终水头损失以及水厂运行管理等因素,通过试验或参照相似条件下已有滤池的经验确定 | 过滤水头1.5~2.4 m | |
| 反洗时间组合 | 气洗2~5 min-气水联合 5~10 min-水洗5~10 min | 气洗2~3 min-气水联合 4~6 min-水洗3~4 min | 气洗3~5 min-气水联合 10~15 min-水洗5~10 min | |
| 参考文献 | [ | [ | [ |
| 应用场景 | 设计或运行水量/(m3·d-1) | 脱氮浓度ΔTN/(mg·L-1) | 单位脱氮量运行成本/[元/(m3·(mg·L-1))] | 参考文献 |
|---|---|---|---|---|
| 石化废水 | 6 000 | 85 | 0.036 | [ |
| 化工园区废水 | 60 000 | 5 | 0.016(仅填料成本) | [ |
| 工业园区废水 | 22 000~25 000 | 5 | 0.01~0.015(仅填料成本) | [ |
| 工业园区废水 | 40 000 | 平均8.75 | 0.03~0.035(仅填料成本) | [ |
| 印染废水 | 86.4~379.2 | 平均11.2 | 0.02 | [ |
| 生活污水 | 最大336 | 6~13 | 0.008~0.018 | [ |
表4 实际应用项目硫自养反硝化运行成本
Table 4 Operation costs of sulfur autotrophic denitrification in practical application projects
| 应用场景 | 设计或运行水量/(m3·d-1) | 脱氮浓度ΔTN/(mg·L-1) | 单位脱氮量运行成本/[元/(m3·(mg·L-1))] | 参考文献 |
|---|---|---|---|---|
| 石化废水 | 6 000 | 85 | 0.036 | [ |
| 化工园区废水 | 60 000 | 5 | 0.016(仅填料成本) | [ |
| 工业园区废水 | 22 000~25 000 | 5 | 0.01~0.015(仅填料成本) | [ |
| 工业园区废水 | 40 000 | 平均8.75 | 0.03~0.035(仅填料成本) | [ |
| 印染废水 | 86.4~379.2 | 平均11.2 | 0.02 | [ |
| 生活污水 | 最大336 | 6~13 | 0.008~0.018 | [ |
| [1] |
JIA H, QIAN H. Groundwater nitrate response to hydrogeological conditions and socioeconomic load in an agriculture dominated area[J]. Scientific Reports, 2025, 15(1): 1315.
DOI |
| [2] |
ABASCAL E, GÓMEZ-COMA L, ORTIZ I, et al. Global diagnosis of nitrate pollution in groundwater and review of removal technologies[J]. Science of the Total Environment, 2022, 810: 152233.
DOI URL |
| [3] | 王丽娜, 王珍, 张峰举, 等. 环境材料去除水中硝酸盐的研究进展[J/OL]. 材料导报, 2025: 1-18[2025-03-20]. https://link.cnki.net/urlid/50.1078.TB.20250320.0956.002. |
| [4] |
CHENG F Y, VAN METER K J, BYRNES D K, et al. Maximizing US nitrate removal through wetland protection and restoration[J]. Nature, 2020, 588(7839): 625-630.
DOI |
| [5] | 国务院. 国务院印发《“十四五”节能减排综合工作方案》[J]. 节能与环保, 2022(2): 6. |
| [6] |
MARCEL M M, KUYPERS CA, HANNAH K, et al. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5) : 263-276.
DOI PMID |
| [7] |
SHAO B, XIE Y G, ZHANG L, et al. Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle[J]. Nature Communications, 2025, 16(1): 1202.
DOI |
| [8] |
LIU H T, Du Y, Chen Y Z, et al. Nitrogen removal via solid carbon source-driven heterotrophic nitrification and aerobic denitrification in marine aquaculture wastewater[J]. Journal of Water Process Engineering, 2025, 73: 107697.
DOI URL |
| [9] |
ZHANG Y, ZHANG Q, XU X, et al. High-efficiency mixotrophic biological nitrogen removal process at low temperature: sulfur disproportionation-mediated greenhouse gas mitigation[J]. Chemical Engineering Journal, 2025, 514: 163028.
DOI URL |
| [10] |
WANG N, BAI S, ZHANG Y nan, et al. Sulfur autotrophic denitrification as a sustainable nitrogen removal technology to achieve carbon neutrality: recent advances and optimization strategies[J]. Journal of Water Process Engineering, 2025, 70: 107154.
DOI URL |
| [11] |
YE J, REN G, LIU L, et al. Wastewater denitrification driven by mechanical energy through cellular piezo-sensitization[J]. Nature Water, 2024, 2(6): 531-540.
DOI |
| [12] |
WANG T, LI X, WANG H, et al. Sulfur autotrophic denitrification as an efficient nitrogen removals method for wastewater treatment towards lower organic requirement: a review[J]. Water Research, 2023, 245: 120569.
DOI URL |
| [13] |
YANG Y, PEREZ CALLEJA P, LIU Y, et al. Assessing intermediate formation and electron competition during thiosulfate-driven denitrification: an experimental and modeling study[J]. Environmental Science & Technology, 2022, 56(16): 11760-11770.
DOI URL |
| [14] |
WANG J, ZHANG F, WANG Z, et al. Metagenomic insights into nitrite accumulation in sulfur-based denitrification systems utilizing different electron donors: functional microbial communities and metabolic mechanisms[J]. Water Research, 2025, 270: 122805.
DOI URL |
| [15] |
HE J, WANG M, LI S, et al. Cryo-EM structure of the plant nitrate transporter AtCLCa reveals characteristics of the anion-binding site and the ATP-binding pocket[J]. Journal of Biological Chemistry, 2023, 299(2): 102833.
DOI URL |
| [16] |
GALES G, HENNART M, HANNOUN M, et al. Metabolic versatility and nitrate reduction pathways of a new thermophilic bacterium of the deferrivibrionaceae: deferrivibrio metallireducens sp. nov isolated from hot sediments of Vulcano Island, Italy[J]. PloS one, 2015, 20(3): e0315093.
DOI URL |
| [17] |
AHMED S M, RIND S, RANI K. Systematic review: External carbon source for biological denitrification for wastewater[J]. Biotechnology and Bioengineering, 2023, 120(3): 642-658.
DOI URL |
| [18] |
ZHANG C J, CHEN H, UE G. Enhanced nitrogen removal from low C/N ratio wastewater by coordination of ternary electron donors of Fe0, carbon source and sulfur: focus on oxic/anoxic/oxic process[J]. Water Research, 2025, 276: 123290.
DOI URL |
| [19] |
LIU X, YU J, WANG H, et al. Effect of magnetic powder (Fe3O4) on heterotrophic-sulfur autotrophic denitrification efficiency and electron transport system activity for marine recirculating aquacultural wastewater treatment[J]. Journal of Environmental Management, 2024, 370: 122749.
DOI URL |
| [20] |
LIU F, LI H, JIANG J, et al. Bio-augmentation driven sulfur autotrophic denitrification process: focusing on denitrification performance, microbial community and gene characteristics[J]. Journal of Environmental Chemical Engineering, 2024, 12(6): 114905.
DOI URL |
| [21] |
ZHOU Y, CHEN F, CHEN N, et al. Denitrification performance and mechanism of biofilter constructed with sulfur autotrophic denitrification composite filler in engineering application[J]. Bioresource Technology, 2021, 340: 125699.
DOI URL |
| [22] |
WANG W, WEI D, LI F, et al. Sulfur-siderite autotrophic denitrification system for simultaneous nitrate and phosphate removal: from feasibility to pilot experiments[J]. Water Research, 2019, 160: 52-59.
DOI PMID |
| [23] |
REN Z, MA J, DING P, et al. Autotrophic denitrification in coking wastewater treatment systems: comprehensive comparative study of full-scale systems in China[J]. Bioresource Technology, 2025, 427: 132442.
DOI URL |
| [24] |
WANG Y, XU W, YANG X, et al. Long-term operation of a pilot-scale sulfur-based autotrophic denitrification system for deep nitrogen removal[J]. Water, 2023, 15(3): 428.
DOI URL |
| [25] |
SHAO L, WANG D, CHEN G, et al. Advance in the sulfur-based electron donor autotrophic denitrification for nitrate nitrogen removal from wastewater[J]. World Journal of Microbiology and Biotechnology, 2024, 40(1): 7.
DOI |
| [26] |
BAI Y, WANG S, ZHUSSUPBEKOVA A, et al. High-rate iron sulfide and sulfur-coupled autotrophic denitrification system: nutrients removal performance and microbial characterization[J]. Water Research, 2023, 231: 119619.
DOI URL |
| [27] | 李莹莹. 硫自养反硝化生物滤池脱氮效能与微生物群落特征研究[D]. 北京: 北京林业大学, 2020. |
| [28] |
ZHANG Y, WANG Q, ROGERS M J, et al. Autotrophic denitrification under anoxic conditions by newly discovered mixotrophic sulfide-oxidizing bacterium[J]. Bioresource Technology, 2025, 430: 132553.
DOI URL |
| [29] |
ZHANG L, SONG Y, ZUO Y, et al. Integrated sulfur- and iron-based autotrophic denitrification process and microbial profiling in an anoxic fluidized-bed membrane bioreactor[J]. Chemosphere, 2019, 221: 375-382.
DOI PMID |
| [30] | 蒋富海. 自养脱氮滤池在工业园区污水处理厂的工程应用[J]. 给水排水, 2021, 57(8): 66-72. |
| [31] |
PENG Z, SHI H, WU S, et al. Biological denitrification performance of a novel sulfur-slow-release carbon source mixed filler[J]. Journal of Water Process Engineering, 2024, 62: 105257.
DOI URL |
| [32] |
HAN Y, WANG J, LIU T, et al. Synchronous nitrogen and sulfur removal in sulfur-coated iron carbon micro-electrolytic fillers: exploring the synergy between sulfur autotrophic denitrification and iron-carbon micro-electrolysis[J]. Journal of Hazardous Materials, 2025, 486: 137030.
DOI URL |
| [33] | 谢佩佩. 一种硫自养反硝化功能生物载体材料及其制备方法和应用: CN118598360A[P]. |
| [34] | 代文臣, 庞皓文, 姜宏斌. 硫自养反硝化生物填料及其制备方法、硫自养反硝化流化床、硫自养反硝化滤池装置和应用: CN119240937A[P]. |
| [35] | 田大勇, 孙茜, 常恒阁, 等. 一种五合一复合型硫自养反硝化滤料及其制备方法与应用: CN119118359A[P]. |
| [36] | 庞一雄, 潘禹,李滨. 一种掺杂富铁泥炭的硫自养反硝化填料及其制备方法: CN118145794A[P]. |
| [37] | RONG Y, FANG H. The study on nitrogen removal enhancement from secondary biochemical effluent by sulfur autotrophic denitrification composite filler[J]. Sustainable Development Research, 2025, 7(2): 71. |
| [38] |
KONG F, WANG J, HOU W, et al. Influence of modified biochar supported sulfidation of nano-zero-valent-iron (S-nZVI/BC) on nitrate removal and greenhouse gas emission in constructed wetland[J]. Journal of Environmental Sciences, 2023, 125: 568-581.
DOI PMID |
| [39] |
PEI C, LI B, LI X, et al. Preparation and optimization of sulfur ferrous inorganic carbon composite filler for autotrophic denitrification nitrogen and phosphorus removal[J]. Journal of Environmental Management, 2024, 371: 123181.
DOI URL |
| [40] | 程彬彬, 陈春茂, 王庆宏, 等. 硫自养反硝化生物滤池工艺处理石化废水[J]. 化工环保, 2025, 45(1): 154-160. |
| [41] | 王候兵, 马月华, 岳磊, 等. 不同填料对硫自养反硝化深度脱氮效能的影响研究[J]. 山东化工, 2023, 52(11): 236-240. |
| [42] | 硫自养反硝化技术及应用研究进展[J]. 中国给水排水, 2025, 41(8): 22-31. |
| [43] | 刘柏利, 邢琳琼, 王亚静, 等. 纳米零价铁强化硫自养反硝化脱氮性能[J]. 环境工程学报, 2025, 19(3): 697-708. |
| [44] |
DANG X, LI X, ZHAO C, et al. Impact of temperature switching on nitrogen removal and effluent S/N ratio via sulfur autotrophic denitrification[J]. Biochemical Engineering Journal, 2025, 219: 109703.
DOI URL |
| [45] | 钱志敏, 孙移鹿, 张雪宁, 等. 硫基功能材料在污水深度脱氮中的应用:研究进展与发展趋势[J]. 能源环境保护, 2023, 37(2): 1-15. |
| [46] | 张理泰, 杨长军, 余丹, 等. 硫自养反硝化用于深度处理脱氮的研究与进展[J]. 云南化工, 2020, 47(3): 1-4, 6. |
| [47] | 李政辉. 硫自养反硝化处理低碳氮比废水的性能及微生物特性研究[D]. 马鞍山: 安徽工业大学, 2023. |
| [48] |
PAN H, CUI M H, ZHANG C, et al. Alkalinity regulation in a sulfur autotrophic denitrifying filter substantially reduced total dissolved solids and sulfate in effluent[J]. Bioresource Technology, 2022, 348: 126751.
DOI URL |
| [49] |
GU Z, LIU Z, CHENG Y, et al. Intensified denitrification in a fluidized-bed reactor with suspended sulfur autotrophic microbial fillers[J]. Bioresource Technology, 2024, 391: 129965.
DOI URL |
| [50] |
ZHANG L, ZHANG C, HU C, et al. Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors[J]. Water Research, 2015, 85: 422-431.
DOI PMID |
| [51] |
HUANG C, LI Z ling, CHEN F, et al. Efficient regulation of elemental sulfur recovery through optimizing working height of upflow anaerobic sludge blanket reactor during denitrifying sulfide removal process[J]. Bioresource Technology, 2016, 200: 1019-1023.
DOI PMID |
| [52] |
LI Y, HAN Q, LI B. Engineering-scale application of sulfur-driven autotrophic denitrification wetland for advanced treatment of municipal tailwater[J]. Bioresource Technology, 2023, 379: 129035.
DOI URL |
| [53] |
KONG Z, LI L, FENG C, et al. Soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification for domestic wastewater treatment[J]. Bioresource Technology, 2015, 187: 14-22.
DOI PMID |
| [54] |
GUO X, ZHU W, WANG Z, et al. Insight into shortening mechanisms of start-up time for three-dimensional biofilm electrode reactor/pyrite-autotrophic denitrification coupled system[J]. Bioresource Technology, 2025, 415: 131719.
DOI URL |
| [55] |
LIU Y, WANG K, ZHANG S. In-situ utilizing the produced electricity to regulate substrate conversion in denitrifying sulfide removal microbial fuel cells[J]. Bioresource Technology, 2021, 322: 124535.
DOI URL |
| [56] | 贠丹丹, 梁硕, 陆军, 等. 污水处理厂硫自养反硝化滤池脱氮中试[J]. 中国给水排水, 2025, 41(15): 109-115. |
| [57] |
魏秋, 王春荣, 宋俊学, 等. 硫/铁硫化物自养反硝化脱氮除磷研究进展[J]. 工业水处理, 2022, 42(12): 10-16.
DOI |
| [58] | 江优优, 涂辉, 王婷, 等. 硫自养反硝化脱氮滤池在处理焦化废水中的应用[J]. 环境工程学报, 2025, 19(5): 1259-1270. |
| [59] |
ZHANG G, XU H R, LIAO W, et al. Bed-immersion-ratio variation as an efficient strategy to regulate denitrification efficiency directionally in elemental sulfur packed-bed reactors[J]. Water Research, 2025, 272: 122941.
DOI URL |
| [60] |
SUN Y L, LI Z R, ZHANG X N, et al. Design and operation insights concerning a pilot-scale S0-driven autotrophic denitrification packed-bed process[J]. Chemical Engineering Journal, 2023, 470: 144396.
DOI URL |
| [61] | 朱长军, 郭龙龙, 李崴峰, 等. 城镇污水处理厂硫自养反硝化深度脱氮研究[J]. 河北工程大学学报(自然科学版), 2021, 38(4): 81-85. |
| [62] |
KIM J, KIM K, YE H, et al. Anaerobic fluidized bed membrane bioreactor for wastewater treatment[J]. Environmental Science & Technology, 2011, 45(2): 576-581.
DOI URL |
| [63] |
ZHANG L, ZHANG C, HU C, et al. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance and bacterial community structure[J]. Applied Microbiology and Biotechnology, 2015, 99(6): 2815-2827.
DOI PMID |
| [64] |
ZOU G, PAPIRIO S, LAKANIEMI A M, et al. High rate autotrophic denitrification in fluidized-bed biofilm reactors[J]. Chemical Engineering Journal, 2016, 284: 1287-1294.
DOI URL |
| [65] | CARBONI M F, MILLS S, ARRIAGA S, et al. Autotrophic denitrification of nitrate rich wastewater in fluidized bed reactors using pyrite and elemental sulfur as electron donors[J]. Environmental Technology & Innovation, 2022, 28: 102878. |
| [66] |
DI CAPUA F, LAKANIEMI A M, PUHAKKA J A, et al. High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor[J]. Chemical Engineering Journal, 2017, 310: 282-291.
DOI URL |
| [67] |
CUI Y X, WU D, MACKEY H R, et al. Application of a moving-bed biofilm reactor for sulfur-oxidizing autotrophic denitrification[J]. Water Science and Technology, 2017, 77(4): 1027-1034.
DOI URL |
| [68] | 阳妍. 可溶性无机硫自养反硝化脱氮代谢历程及动力学模型[D]. 重庆: 重庆大学, 2024. |
| [69] |
CUI Y X, BISWAL B K, VAN LOOSDRECHT M C M, et al. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor[J]. Water Research, 2019, 166: 115038.
DOI URL |
| [70] |
KOSTRYTSIA A, PAPIRIO S, KHODZHAEV M, et al. Biofilm carrier type affects biogenic sulfur-driven denitrification performance and microbial community dynamics in moving-bed biofilm reactors[J]. Chemosphere, 2022, 287: 131975.
DOI URL |
| [71] |
CUI Y X, GUO G, EKAMA G A, et al. Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal[J]. Water Research, 2019, 162: 246-257.
DOI URL |
| [72] |
KIMURA K, NAKAMURA M, WATANABE Y. Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration[J]. Water Research, 2002, 36(7): 1758-1766.
PMID |
| [73] |
UCAR D, YILMAZ T, DI CAPUA F, et al. Comparison of biogenic and chemical sulfur as electron donors for autotrophic denitrification in sulfur-fed membrane bioreactor (SMBR)[J]. Bioresource Technology, 2020, 299: 122574.
DOI URL |
| [74] |
SAHINKAYA E, YURTSEVER A, AKTAŞ Ö, et al. Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor[J]. Chemical Engineering Journal, 2015, 268: 180-186.
DOI URL |
| [75] | 陈梦怡. 硫自养反硝化动态膜生物反应器研究[D]. 哈尔滨: 哈尔滨工业大学, 2025. |
| [76] | 韩笃悦, 刘元国, 金春姬, 等. 黄铁矿-硫自养反硝化耦合动态膜生物反应器的脱氮性能[J]. 绿色科技, 2025, 27(4): 180-187. |
| [77] | 高舒嘉. 硫自养悬浮填料的制备与污水混养脱氮的研究[D]. 桂林: 桂林理工大学, 2023. |
| [78] |
HUANG C, LIU Q, CHEN C, et al. Elemental sulfur recovery and spatial distribution of functional bacteria and expressed genes under different carbon/nitrate/sulfide loadings in up-flow anaerobic sludge blanket reactors[J]. Journal of Hazardous Materials, 2017, 324: 48-53.
DOI PMID |
| [79] |
LI K, GUO J, LI H, et al. A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: performance advantages of a step-feeding strategy[J]. Bioresource Technology, 2019, 279: 297-306.
DOI PMID |
| [80] | 张强, 李静, 麻倩, 等. 基于低高径比UASB的硫自养反硝化工艺启动试验研究[J]. 环境科学导刊, 2025, 44(1): 74-81. |
| [81] |
HUANG S, ZHENG Z, WEI Q, et al. Performance of sulfur-based autotrophic denitrification and denitrifiers for wastewater treatment under acidic conditions[J]. Bioresource Technology, 2019, 294: 122176.
DOI URL |
| [82] |
DUYAR A, OZDEMIR S, AKMAN D, et al. Optimization of sulfide-based autotrophic denitrification process in an anaerobic baffled reactor[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(3): 754-760.
DOI URL |
| [83] |
LIANG B, ZHANG K, LIU D, et al. Exploration and verification of the feasibility of sulfur-based autotrophic denitrification process coupled with vibration method in a modified anaerobic baffled reactor for wastewater treatment[J]. Science of the Total Environment, 2021, 786: 147348.
DOI URL |
| [84] | 徐冉, 崔建东, 郜爽, 等. 反硝化硫氧化工艺中功能菌株的筛选、识别及验证[J]. 环境工程, 2023, 41(12): 123-130. |
| [85] | 王滢. 改良多级土壤渗滤系统强化生活污水脱氮除磷研究[D]. 北京: 中国地质大学(北京), 2023. |
| [86] |
KONG Z, FENG C, CHEN N, et al. A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment[J]. Bioresource Technology, 2014, 159: 272-279.
DOI PMID |
| [87] |
陈涛, 王翔, 朱召军, 等. 垂直流湿地用于产业集聚区污水厂尾水脱氮处理[J]. 工业水处理, 2019, 39(11): 101-103, 112.
DOI |
| [88] |
WANG H, LI Y, ZHANG S, et al. Effect of influent feeding pattern on municipal tailwater treatment during a sulfur-based denitrification constructed wetland.[J]. Bioresource Technology, 2020, 315: 123807.
DOI URL |
| [89] | 李文泉, 南贵珍, 商静静. 污水处理厂尾水硫自养反硝化人工湿地脱氮效果[J]. 净水技术, 2023, 42(8): 94-100. |
| [90] |
MA Y, ZHENG X, FANG Y, et al. Autotrophic denitrification in constructed wetlands: achievements and challenges[J]. Bioresource Technology, 2020, 318: 123778.
DOI URL |
| [91] | 李瑞. 地下水硝酸盐污染原位生物修复模拟装置研发及其性能研究[D]. 北京: 中国地质大学(北京), 2015. |
| [92] | 刘圣锋. 微生物强化硫基PRB修复稀土矿山地下水氮污染研究[D]. 南昌: 东华理工大学, 2025. |
| [93] | 陈俊刚, 张微, 谭映宇, 等. 硫自养人工湿地对低碳氮比废水的脱氮效能分析[J]. 环境污染与防治, 2024, 46(8): 1116-1122. |
| [94] | 熊鑫溢. 电营养反硝化MFC阴极接种菌群对比研究[D]. 重庆: 重庆大学, 2024. |
| [95] | 薛立静. 稻壳集成生物电极修复硝酸盐污染地下水性能与机理研究[D]. 北京: 中国地质大学(北京), 2025. |
| [96] |
WANG H, QU J. Combined bioelectrochemical and sulfur autotrophic denitrification for drinking water treatment[J]. Water Research, 2003, 37(15): 3767-3775.
PMID |
| [97] | 王旭峰, 杨涛, 徐秀丽, 等. 三维电极生物膜与硫自养耦合工艺脱氮特性[J]. 中国给水排水, 2024, 40(17): 31-35. |
| [98] | 郭昌梓, 姚佳玉, 张凤燕, 等. 硫自养反硝化燃料电池脱氮除硫及产电性能的实验研究[J]. 陕西科技大学学报, 2018, 36(4): 28-34. |
| [99] |
CHEN Z, ZHANG S, ZHONG L. Simultaneous sulfide removal, nitrogen removal and electricity generation in a coupled microbial fuel cell system[J]. Bioresource Technology, 2019, 291: 121888.
DOI URL |
| [100] |
YAN J, HU X, HE Q, et al. Simultaneous enhancement of treatment performance and energy recovery using pyrite as anodic filling material in constructed wetland coupled with microbial fuel cells[J]. Water Research, 2021, 201: 117333.
DOI URL |
| [101] | 张雪婷, 汪茂森, 秦杨毅, 等. 焦炭/黄铁矿强化微生物燃料电池-人工湿地脱氮产电性能[J/OL]. 生态学杂志, 2025: 1-8.[2025-08-11]. https://link.cnki.net/urlid/21.1148.Q.20250211.1609.004. |
| [102] | 刘锋, 张龙飞, 耿雅雯, 等. 碳源强化硫自养反硝化对污水处理厂二级出水深度脱氮的研究[J]. 安全与环境学报, 2023, 23(3): 864-873. |
| [103] | 张文华, 蔡巾兰, 孙家源, 等. 硫自养反硝化技术在污水深度处理中的研究和应用[J]. 广州化工, 2024, 52(15): 112-114. |
| [104] |
ZHANG Q. Pilot-scale sulfur autotrophic denitrification biofilter in denitrification of pig farm wastewater biological tail water[J]. Desalination and Water Treatment, 2023, 316: 151-159.
DOI URL |
| [105] | 梁硕, 贠丹丹, 王艳芝, 等. 硫自养反硝化滤池冬季低温脱氮中试[J]. 中国给水排水, 2025, 41(3): 14-21. |
| [106] | 刘宝峰, 郭宇平. 硫自养反硝化技术用于市政污水深度处理[J]. 中国给水排水, 2022, 38(22): 91-95. |
| [107] | 王凯, 朱辉. 尾水高效自养反硝化工艺深度脱氮的应用研究[J]. 水处理技术, 2022, 48(11): 127-130. |
| [108] |
LI R, WEI D, WANG W, et al. Pyrrhotite-sulfur autotrophic denitrification for deep and efficient nitrate and phosphate removal: synergistic effects, secondary minerals and microbial community shifts[J]. Bioresource Technology, 2020, 308: 123302.
DOI URL |
| [109] |
LI Y, WANG Y, WAN D, et al. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: performance and microbial community structure[J]. Bioresource Technology, 2020, 300: 122682.
DOI URL |
| [110] | 宋庆原, 林峰, 余国富, 等. 硫自养反硝化滤池对二级出水脱氮效果研究[J]. 给水排水, 2023, 59(3): 21-25. |
| [111] |
王鸿博, 郑晓英, 王慰, 等. 基于硫自养反硝化填料对城市污水厂二沉水的脱氮性能研究[J]. 水处理技术, 2024, 50(9): 91-97.
DOI |
| [112] |
CHEN X, YANG L, CHEN F, et al. High efficient bio-denitrification of nitrate contaminated water with low ammonium and sulfate production by a sulfur/pyrite-based bioreactor[J]. Bioresource Technology, 2022, 346: 126669.
DOI URL |
| [113] |
CHEN Z, PANG C, WEN Q. Coupled pyrite and sulfur autotrophic denitrification for simultaneous removal of nitrogen and phosphorus from secondary effluent: feasibility, performance and mechanisms[J]. Water Research, 2023, 243: 120422.
DOI URL |
| [114] |
CUI P, WAN N, LI C, et al. Comparative analysis of sulfur-driven autotrophic denitrification for pilot-scale application: pollutant removal performance and metagenomic function[J]. Bioresource Technology, 2024, 413: 131433.
DOI URL |
| [115] |
LI Y, LIU L, WANG H. Mixotrophic denitrification for enhancing nitrogen removal of municipal tailwater: contribution of heterotrophic/sulfur autotrophic denitrification and bacterial community[J]. Science of the Total Environment, 2022, 814: 151940.
DOI URL |
| [116] | 王佳宇. 硫-铁协同驱动自养反硝化流化床脱氮效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2023. |
| [117] | SAHINKAYA E, YURTSEVER A, UCAR D. A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr(VI) and nitrate reduction.[J]. Journal of Hazardous Materials, 2017, 324(A): 15-21. |
| [118] |
YILMAZ T, SAHINKAYA E. Performance of sulfur-based autotrophic denitrification process for nitrate removal from permeate of an MBR treating textile wastewater and concentrate of a real scale reverse osmosis process[J]. Journal of Environmental Management, 2023, 326: 116827.
DOI URL |
| [119] |
HAO R, ZHOU Y, LI J, et al. A 3DBER-S-EC process for simultaneous nitrogen and phosphorus removal from wastewater with low organic carbon content[J]. Journal of Environmental Management, 2018, 209: 57-64.
DOI PMID |
| [120] | 王峰. 城镇污水厂提标工程的关键技术方案组合及可行性分析[D]. 厦门: 华侨大学, 2022. |
| [121] | 许健. 硫自养反硝化技术研究进展及展望[J]. 广州化工, 2025, 53(16): 29-32. |
| [122] |
WANG J, GONG B, HUANG W, et al. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing[J]. Bioresource Technology, 2017, 228: 31-38.
DOI PMID |
| [123] | 张娆, 徐晓晨, 王叶鑫, 等. 硫自养反硝化深度处理污水厂生化出水中的${\mathrm{NO}}_{3}^{-}$-N[J]. 中国给水排水, 2022, 38(15): 21-28. |
| [124] | 胡华锐. 硝氮浓度对硫自养反硝化脱氮性能及生物特征影响研究[D]. 沈阳: 沈阳工业大学, 2024. |
| [125] | 张祎凡. 硫自养反硝化脉动床高效脱氮工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2025. |
| [126] |
HE Q, ZHANG D, MAIN K, et al. Biological denitrification in marine aquaculture systems: a multiple electron donor microcosm study[J]. Bioresource Technology, 2018, 263: 340-349.
DOI PMID |
| [127] | 邱颖, 蔡伟, 杨作明, 等. 北京长兴湿地深度净化再生水工程设计[J]. 湿地科学与管理, 2024, 20(6): 71-76. |
| [128] | 孙立柱, 丁玉琴, 沈永, 等. 五种硫自养滤料对市政污水二沉池出水硝酸盐去除效果分析[J]. 广东化工, 2024, 51(18): 119-121. |
| [129] | 薛罡, 何月玲, 王晓暖, 等. 印染废水的硫自养反硝化深度脱氮中试研究[J]. 中国给水排水, 2022, 38(13): 15-21. |
| [130] |
高宗仁, 张开海. 自养型反硝化+臭氧催化氧化应用于污水厂准ⅳ类出水提标改造[J]. 工业水处理, 2022, 42(9): 190-195.
DOI |
| [131] | 蒋富海. 自(异)养脱氮在低C/N污水处理厂的应用实践[J]. 中国给水排水, 2021, 37(12): 124-131. |
| [132] | 高航. 基于协同硫自养反硝化的工业酸洗电镀废水处理技术[J]. 中国资源综合利用, 2025, 43(3): 266-270. |
| [133] | 潘晨晨. 自养反硝化功能填料的动态消耗特征与尺寸效应研究[D]. 沈阳: 辽宁大学, 2024. |
| [134] | 何梓乐. 高级氧化和硫自养反硝化用于垃圾渗滤液深度处理的研究[D]. 哈尔滨: 哈尔滨工业大学, 2024. |
| [135] | 沈洁, 杨国, 廖庆, 等. 处理低C/N废水的反硝化细菌及生物脱氮工艺的研究进展[J]. 山东化工, 2023, 52(20): 83-86. |
| [136] | 周圆, 李怀波, 郑凯凯, 等. 新型组合工艺处理印染废水中试效能及微生物菌群分析[J]. 环境工程学报, 2020, 14(11): 3030-3041. |
| [137] | 任争鸣, 刘雪洁, 苏晓磊, 等. 硫自养反硝化深度脱氮中试研究[J]. 中国给水排水, 2016, 32(19): 31-35. |
| [138] | 汤丹娜. 硫磺/石灰石自养反硝化系统硝酸盐去除性能及N2O产生规律研究[D]. 西安: 长安大学, 2017. |
| [139] |
KHALIL M A K, RASMUSSEN R A, SHEARER M J. Atmospheric nitrous oxide: patterns of global change during recent decades and centuries[J]. Chemosphere, 2002, 47(8): 807-821.
PMID |
| [140] | XU X, LV X, LIU Y, et al. CRISPR/Cas13X-assisted programmable and multiplexed translation regulation for controlled biosynthesis[J]. Nucleic Acids Research, 2025, 53(1): 1293. |
| [141] |
Li M, Duan R, Hao W, et al. High-rate nitrogen removal from carbon limited wastewater using sulfur-based constructed wetland: impact of sulfur sources[J]. The Science of the Total Environment, 2020, 744: 140969.
DOI URL |
| [142] |
CHANG C, SEPTIARIVA I, CHANG J, et al. Nitrate removal by a sulfur-based autotrophic process: insights into performance, kinetics behavior and community[J]. Desalination and Water Treatment, 2024, 317: 100199.
DOI URL |
| [143] | 左宇. 硫自养生物反硝化过程N2O排放特征与机制研究[D]. 北京: 北京化工大学, 2018. |
| [144] |
HAN Y, WU Z, FENG J, et al. Synergistic effects of accompanying heterotrophic bacteria on sulfide-based autotrophic denitrification[J]. Chemical Engineering Journal, 2025, 504: 159070.
DOI URL |
| [145] | 马西涛, 许建. 以硫自养为核心填料的人工湿地脱氮效率及工艺研究[J]. 山西化工, 2024, 44(2): 238-240. |
| [146] |
Lu Z, Xu Y, Liang C, et al. Biogenic sulfide by sulfur disproportionation enhances nitrate removal and reduces N2O production during sulfur autotrophic denitrification[J]. Chemosphere, 2025, 370: 143915.
DOI URL |
| [147] | 宋孟. 硫自养人工湿地强化污水厂尾水深度脱氮研究[D]. 北京: 北京林业大学, 2018. |
| [1] | 席宏波 杨琦 尚海涛 郝春博. 菲降解菌的降解特性及酶促反应动力学研究[J]. 地学前缘, 2008, 15(6): 169-176. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||