

地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 286-302.DOI: 10.13745/j.esf.sf.2025.7.27
收稿日期:2025-07-05
修回日期:2025-07-30
出版日期:2025-11-25
发布日期:2025-11-12
作者简介:罗照华(1956—),男,教授,博士生导师,长期从事矿物学、岩石学、矿床学研究与教学工作。E-mail: luozh@cugb.edu.cn
基金资助:Received:2025-07-05
Revised:2025-07-30
Online:2025-11-25
Published:2025-11-12
摘要:
苦橄岩通常作为地幔柱活动的证据之一,得到了众多学者的关注。然而,许多苦橄岩中含有不同结晶习性的橄榄石晶体,暗示了外来橄榄石晶体的加入。因此,阐明苦橄岩中橄榄石晶体的性质是理解苦橄岩成因及其地质意义的关键环节。本文报道了川西矿山梁子苦橄玢岩岩席中代表性橄榄石颗粒的成分剖面分析结果,发现苦橄玢岩含有4类橄榄石晶体,分别将其称为粗晶橄榄石、聚斑状橄榄石、包裹体橄榄石和鬣刺状橄榄石。统计分析表明粗晶橄榄石具有一个Fo84的主要峰值和一个Fo77的次要峰值;聚斑状橄榄石具有一个Fo92的主要峰值和一个Fo77的次要峰值;包裹体橄榄石(Fo82)和鬣刺状橄榄石(Fo77)只有一个峰值,其中包裹体橄榄石具有均一的成分,而鬣刺状橄榄石具有陡的成分梯度。将成分相近的粗晶橄榄石和包裹体橄榄石合并,则矿山梁子苦橄玢岩中包含3种Fo分布范围明显不同的橄榄石晶体群。这3种晶体群也产于峨眉山玄武岩和大板山辉长岩中,因而可以认为岩浆混合作用是峨眉山大火成岩省岩浆系统的遍在性岩浆过程。热力学和流体动力学分析揭示,聚斑状橄榄石形成于约4 GPa和约1 600 ℃,粗晶橄榄石(及包裹体橄榄石)主要形成于约2~2.5 GPa和约1 450~1 550 ℃,而鬣刺状橄榄石形成于约0.1 GPa和约1 200 ℃。据此,可以认为鬣刺状橄榄石形成于携带岩浆的结晶作用,另两类橄榄石则是携带岩浆从深部岩浆房中捕获的循环晶(antecryst)。橄榄石的NiO含量总体随Fo增加而增加,但存在4个不同的次级变异趋势,其特点是Fo值增加不大的背景下NiO含量急剧升高,暗示岩浆为挥发分流体过饱和系统。此外,样品的橄榄石体积分数随高程强烈变化,与聚斑状橄榄石的产出一起,暗示了岩浆的快速运动。据此,本文认为矿山梁子岩浆系统为至少具有3个深部岩浆房的系统,苦橄玢岩是熔体、晶体和流体的混合物,而不是原生苦橄质岩浆固结的产物。
中图分类号:
罗照华. 四川矿山梁子苦橄玢岩成因:来自橄榄石成分剖面的约束[J]. 地学前缘, 2025, 32(6): 286-302.
LUO Zhaohua. Genesis of picrites in Sichuan Kuangshanliangzi: Constraints from olivine composition profile[J]. Earth Science Frontiers, 2025, 32(6): 286-302.
图1 研究区地理位置图(a)、平川地区区域地质图(b)和矿山梁子矿区地质图(c)(图1b据文献[18]修编)
Fig.1 (a) Geographical location of the study area; (b) Regional geologyical map of Pingchuan (modified after [18]); (c) The mining geological map of Kuangshanliangzi
图4 四号岩席苦橄玢岩中的4类代表性橄榄石晶体特征 a—粗晶橄榄石;b—聚斑状橄榄石;c—“鬣刺”状橄榄石;d—包裹体橄榄石。Ol—橄榄石;Cpx—单斜辉石。
Fig.4 Characteristics of the four types of representative olivines from the picrite sill No.4
图5 橄榄石斑晶体积分数(a)和全岩MgO含量(b)与样品分布高程的关系
Fig.5 Variations of the volume fraction of olivine (a) and the contents of whole rock MgO (b) in samples with the sampling elevations
| 晶体类型 | 特征值 | Fo | wB/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| MnO | CaO | NiO | Cr2O3 | ||||||
| 全部晶体 | 最大值 | 92.40 | 0.57 | 1.26 | 0.67 | 1.09 | |||
| 最小值 | 65.33 | 0.04 | 0.04 | 0.04 | 0.00 | ||||
| 平均值 | 81.22 | 0.26 | 0.26 | 0.33 | 0.05 | ||||
| 峰值 | 83(77) | 0.28 | 0.34 | 0.36 | 0.05 | ||||
| 粗晶 | 最大值 | 90.57 | 0.57 | 1.26 | 0.57 | 1.09 | |||
| 最小值 | 65.33 | 0.06 | 0.05 | 0.06 | 0.00 | ||||
| 平均值 | 81.25 | 0.27 | 0.25 | 0.31 | 0.05 | ||||
| 峰值 | 84(77) | 0.28 | 0.34 | 0.37 | 0.05 | ||||
| 聚斑晶 | 最大值 | 90.91 | 0.46 | 0.51 | 0.67 | 0.25 | |||
| 最小值 | 69.19 | 0.07 | 0.05 | 0.04 | 0.00 | ||||
| 平均值 | 85.36 | 0.19 | 0.22 | 0.41 | 0.08 | ||||
| 峰值 | 91(77) | 0.16 | 0.28 | 0.51 | 0.1(0.06) | ||||
| 包裹体 | 最大值 | 83.30 | 0.48 | 0.95 | 0.47 | 0.13 | |||
| 最小值 | 74.03 | 0.17 | 0.04 | 0.07 | 0.00 | ||||
| 平均值 | 80.41 | 0.27 | 0.29 | 0.31 | 0.03 | ||||
| 峰值 | 82 | 0.28 | 0.34 | 0.33 | 0.03 | ||||
| 鬣刺晶 | 最大值 | 92.40 | 0.55 | 0.42 | 0.51 | 0.08 | |||
| 最小值 | 70.29 | 0.04 | 0.16 | 0.18 | 0.00 | ||||
| 平均值 | 76.58 | 0.33 | 0.30 | 0.31 | 0.03 | ||||
| 峰值 | 83 | 0.34 | 0.34 | 0.36 | 0.02 | ||||
表1 各类橄榄石晶体的成分特征值
Table 1 The composition characteristic values of the populations of olivine crystal
| 晶体类型 | 特征值 | Fo | wB/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| MnO | CaO | NiO | Cr2O3 | ||||||
| 全部晶体 | 最大值 | 92.40 | 0.57 | 1.26 | 0.67 | 1.09 | |||
| 最小值 | 65.33 | 0.04 | 0.04 | 0.04 | 0.00 | ||||
| 平均值 | 81.22 | 0.26 | 0.26 | 0.33 | 0.05 | ||||
| 峰值 | 83(77) | 0.28 | 0.34 | 0.36 | 0.05 | ||||
| 粗晶 | 最大值 | 90.57 | 0.57 | 1.26 | 0.57 | 1.09 | |||
| 最小值 | 65.33 | 0.06 | 0.05 | 0.06 | 0.00 | ||||
| 平均值 | 81.25 | 0.27 | 0.25 | 0.31 | 0.05 | ||||
| 峰值 | 84(77) | 0.28 | 0.34 | 0.37 | 0.05 | ||||
| 聚斑晶 | 最大值 | 90.91 | 0.46 | 0.51 | 0.67 | 0.25 | |||
| 最小值 | 69.19 | 0.07 | 0.05 | 0.04 | 0.00 | ||||
| 平均值 | 85.36 | 0.19 | 0.22 | 0.41 | 0.08 | ||||
| 峰值 | 91(77) | 0.16 | 0.28 | 0.51 | 0.1(0.06) | ||||
| 包裹体 | 最大值 | 83.30 | 0.48 | 0.95 | 0.47 | 0.13 | |||
| 最小值 | 74.03 | 0.17 | 0.04 | 0.07 | 0.00 | ||||
| 平均值 | 80.41 | 0.27 | 0.29 | 0.31 | 0.03 | ||||
| 峰值 | 82 | 0.28 | 0.34 | 0.33 | 0.03 | ||||
| 鬣刺晶 | 最大值 | 92.40 | 0.55 | 0.42 | 0.51 | 0.08 | |||
| 最小值 | 70.29 | 0.04 | 0.16 | 0.18 | 0.00 | ||||
| 平均值 | 76.58 | 0.33 | 0.30 | 0.31 | 0.03 | ||||
| 峰值 | 83 | 0.34 | 0.34 | 0.36 | 0.02 | ||||
图7 橄榄石中MnO、CaO、NiO和Cr2O3含量与Fo值的关系 批式(实线)和分离(虚线)结晶曲线据文献[21],详见正文。
Fig.7 Variations of MnO, CaO, NiO and Cr2O3 contents with Fo value of the olivines. The batch and fractional curves are from [21]. See text for details.
图8 4类橄榄石斑晶Fo值及电子探针氧化物含量对比 C10—PC02-3粗晶橄榄石;A2—PC06-2微晶橄榄石;I2—PC01-3包裹体橄榄石;S2—PC02-4 鬣刺状橄榄石。
Fig.8 The Fo and comparison of the oxide content of four kinds of olivine
| 样品编号 | wB/% | Mg# | XFe/XMg | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ol | SiO2 | TiO2 | Al2O3 | TFeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | |||
| PC02-2 | 31.46 | 50.26 | 2.10 | 14.96 | 8.65 | 0.18 | 6.99 | 13.57 | 2.54 | 0.34 | 0.18 | 0.59 | 0.69 |
| PC02-3 | 45.89 | 49.74 | 1.88 | 15.07 | 8.48 | 0.16 | 6.85 | 14.81 | 2.28 | 0.33 | 0.18 | 0.59 | 0.69 |
| PC02-4 | 31.99 | 49.75 | 1.83 | 15.02 | 9.03 | 0.18 | 7.29 | 13.95 | 2.19 | 0.36 | 0.16 | 0.59 | 0.69 |
| PC06-2 | 11.17 | 48.46 | 2.16 | 14.09 | 11.01 | 0.17 | 8.90 | 12.00 | 2.55 | 0.21 | 0.19 | 0.59 | 0.69 |
| PC06-3 | 42.96 | 49.49 | 1.94 | 14.60 | 9.08 | 0.17 | 7.34 | 14.27 | 2.40 | 0.34 | 0.15 | 0.59 | 0.69 |
| PC06-4 | 41.92 | 50.37 | 2.07 | 14.81 | 9.22 | 0.15 | 7.45 | 13.22 | 1.76 | 0.54 | 0.18 | 0.59 | 0.69 |
| PC10-2 | 11.76 | 49.51 | 2.04 | 14.13 | 10.26 | 0.18 | 8.29 | 12.23 | 2.72 | 0.23 | 0.14 | 0.59 | 0.69 |
| PC10-3 | 47.17 | 49.59 | 1.88 | 14.96 | 8.54 | 0.16 | 6.90 | 14.88 | 2.37 | 0.32 | 0.18 | 0.59 | 0.69 |
| PC10-4 | 44.66 | 50.13 | 2.05 | 14.98 | 9.08 | 0.16 | 7.33 | 13.50 | 2.13 | 0.24 | 0.16 | 0.59 | 0.69 |
| PC01-2 | 34.39 | 49.89 | 2.00 | 13.97 | 9.80 | 0.17 | 7.92 | 13.29 | 2.22 | 0.33 | 0.17 | 0.59 | 0.69 |
| PC01-3 | 41.66 | 49.46 | 1.76 | 14.54 | 9.35 | 0.15 | 7.56 | 14.33 | 1.89 | 0.54 | 0.17 | 0.59 | 0.69 |
| PC01-4 | 41.63 | 49.84 | 2.14 | 14.83 | 9.36 | 0.17 | 7.56 | 13.42 | 1.98 | 0.29 | 0.15 | 0.59 | 0.69 |
| PC14-2 | 39.61 | 48.93 | 2.20 | 14.33 | 8.86 | 0.25 | 7.16 | 17.23 | 0.48 | 0.17 | 0.17 | 0.59 | 0.69 |
| PC14-3 | 42.35 | 49.47 | 2.05 | 15.00 | 9.00 | 0.18 | 7.27 | 14.36 | 1.80 | 0.45 | 0.19 | 0.59 | 0.69 |
| PC14-4 | 43.76 | 50.21 | 2.11 | 14.68 | 8.49 | 0.16 | 6.85 | 16.21 | 0.57 | 0.33 | 0.18 | 0.59 | 0.69 |
| PC03 | 7.89 | 48.53 | 1.88 | 13.31 | 11.60 | 0.15 | 9.37 | 12.24 | 2.14 | 0.37 | 0.11 | 0.59 | 0.69 |
| PC16 | 29.44 | 49.71 | 1.77 | 13.49 | 10.74 | 0.17 | 8.68 | 12.37 | 2.17 | 0.36 | 0.27 | 0.59 | 0.69 |
| PC35 | 2.78 | 49.42 | 1.74 | 12.93 | 11.83 | 0.19 | 9.56 | 11.61 | 2.10 | 0.22 | 0.09 | 0.59 | 0.69 |
| PC36 | 25.33 | 50.26 | 1.72 | 13.15 | 10.80 | 0.16 | 8.72 | 12.19 | 2.20 | 0.27 | 0.26 | 0.59 | 0.69 |
| PC42 | 27.98 | 49.70 | 1.79 | 13.29 | 10.82 | 0.19 | 8.74 | 12.76 | 1.96 | 0.32 | 0.16 | 0.59 | 0.69 |
表2 矿山梁子苦橄玢岩中携带岩浆成分的质量平衡计算结果
Table 2 Results from massbalance recalculation of carrier magma composition for the Kuangshanliangzi porphiritic picrites
| 样品编号 | wB/% | Mg# | XFe/XMg | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ol | SiO2 | TiO2 | Al2O3 | TFeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | |||
| PC02-2 | 31.46 | 50.26 | 2.10 | 14.96 | 8.65 | 0.18 | 6.99 | 13.57 | 2.54 | 0.34 | 0.18 | 0.59 | 0.69 |
| PC02-3 | 45.89 | 49.74 | 1.88 | 15.07 | 8.48 | 0.16 | 6.85 | 14.81 | 2.28 | 0.33 | 0.18 | 0.59 | 0.69 |
| PC02-4 | 31.99 | 49.75 | 1.83 | 15.02 | 9.03 | 0.18 | 7.29 | 13.95 | 2.19 | 0.36 | 0.16 | 0.59 | 0.69 |
| PC06-2 | 11.17 | 48.46 | 2.16 | 14.09 | 11.01 | 0.17 | 8.90 | 12.00 | 2.55 | 0.21 | 0.19 | 0.59 | 0.69 |
| PC06-3 | 42.96 | 49.49 | 1.94 | 14.60 | 9.08 | 0.17 | 7.34 | 14.27 | 2.40 | 0.34 | 0.15 | 0.59 | 0.69 |
| PC06-4 | 41.92 | 50.37 | 2.07 | 14.81 | 9.22 | 0.15 | 7.45 | 13.22 | 1.76 | 0.54 | 0.18 | 0.59 | 0.69 |
| PC10-2 | 11.76 | 49.51 | 2.04 | 14.13 | 10.26 | 0.18 | 8.29 | 12.23 | 2.72 | 0.23 | 0.14 | 0.59 | 0.69 |
| PC10-3 | 47.17 | 49.59 | 1.88 | 14.96 | 8.54 | 0.16 | 6.90 | 14.88 | 2.37 | 0.32 | 0.18 | 0.59 | 0.69 |
| PC10-4 | 44.66 | 50.13 | 2.05 | 14.98 | 9.08 | 0.16 | 7.33 | 13.50 | 2.13 | 0.24 | 0.16 | 0.59 | 0.69 |
| PC01-2 | 34.39 | 49.89 | 2.00 | 13.97 | 9.80 | 0.17 | 7.92 | 13.29 | 2.22 | 0.33 | 0.17 | 0.59 | 0.69 |
| PC01-3 | 41.66 | 49.46 | 1.76 | 14.54 | 9.35 | 0.15 | 7.56 | 14.33 | 1.89 | 0.54 | 0.17 | 0.59 | 0.69 |
| PC01-4 | 41.63 | 49.84 | 2.14 | 14.83 | 9.36 | 0.17 | 7.56 | 13.42 | 1.98 | 0.29 | 0.15 | 0.59 | 0.69 |
| PC14-2 | 39.61 | 48.93 | 2.20 | 14.33 | 8.86 | 0.25 | 7.16 | 17.23 | 0.48 | 0.17 | 0.17 | 0.59 | 0.69 |
| PC14-3 | 42.35 | 49.47 | 2.05 | 15.00 | 9.00 | 0.18 | 7.27 | 14.36 | 1.80 | 0.45 | 0.19 | 0.59 | 0.69 |
| PC14-4 | 43.76 | 50.21 | 2.11 | 14.68 | 8.49 | 0.16 | 6.85 | 16.21 | 0.57 | 0.33 | 0.18 | 0.59 | 0.69 |
| PC03 | 7.89 | 48.53 | 1.88 | 13.31 | 11.60 | 0.15 | 9.37 | 12.24 | 2.14 | 0.37 | 0.11 | 0.59 | 0.69 |
| PC16 | 29.44 | 49.71 | 1.77 | 13.49 | 10.74 | 0.17 | 8.68 | 12.37 | 2.17 | 0.36 | 0.27 | 0.59 | 0.69 |
| PC35 | 2.78 | 49.42 | 1.74 | 12.93 | 11.83 | 0.19 | 9.56 | 11.61 | 2.10 | 0.22 | 0.09 | 0.59 | 0.69 |
| PC36 | 25.33 | 50.26 | 1.72 | 13.15 | 10.80 | 0.16 | 8.72 | 12.19 | 2.20 | 0.27 | 0.26 | 0.59 | 0.69 |
| PC42 | 27.98 | 49.70 | 1.79 | 13.29 | 10.82 | 0.19 | 8.74 | 12.76 | 1.96 | 0.32 | 0.16 | 0.59 | 0.69 |
图10 矿山梁子苦橄质岩席在TAS图解(a)和(Na2O+K2O)-MgO图解(b)中的投点位置,示调整前(黑三角)、后(实心圆)的成分差异。(全岩化学分析据[19],底图据[12])
Fig.10 The position of the picrite mat of the Kuangshanliangzi in the TAS diagram (a) and (Na2O+K2O)-MgO diagram (b), the composition difference of the former (solid circle) and after (Solid round) the adjustment. The total rock chemical analysis is according to [19], base figure according to [12].
图12 矿山梁子苦橄质岩浆的上升路径(底图据[28]简化) 粗实线为地幔潜温曲线;细实线为干二辉橄榄岩固相线;灰色细实线为温度较低的3种地幔潜温曲线。
Fig.12 The ascending path of the picrite magma of the Kuangshanliangzi. Base figure adapted from [28].
| [1] | ROHRBACH A, SCHUTH S, BALLHAUS C, et al. Petrological constraints on the origin of arc picrites, New Georgia Group, Solomon Islands[J]. Contributions to Mineralogy and Petrology, 2005, 149: 685-698. |
| [2] | 张招崇, JOHN J M, 王福生, 等. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学:地幔柱头部熔融的证据[J]. 岩石学报, 2006, 22(6): 1538-1552. |
| [3] | HERZBERG C, O’HARA M J. Phase equilibrium constraints on the origin of basalts, picrites, and komatiites[J]. Earth-Science Reviews, 1998, 44: 39-79. |
| [4] | 徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, 2002, 9(4): 341-353. |
| [5] | 张招崇, 郝艳丽, 王福生. 大火成岩省中苦橄岩的研究意义[J]. 地学前缘, 2003, 10(3): 105-114. |
| [6] | KAMENETSKY V S, CHUNG S L, KAMENETSKY M B, et al. Picrites from the Emeishan Large Igneous Province, SW China: a compositional continuum in primitive magmas and their respective mantle sources[J]. Journal of Petrology, 2012, 53(10): 2095-2113. |
| [7] | ANDERSON D L. Komatiites and picrites: evidence that the ‘plume’ souce is depleted[J]. Earth and Planetary Letters, 1994, 128: 303-311. |
| [8] | LI J, WANG X C, REN Z Y, et al. Chemical heterogeneity of the Emeishan mantle plume: evidence from highly siderophile element abundances in picrites[J]. Journal of Asian Earth Sciences, 2014, 79: 191-205. |
| [9] | CARMICHAEL I S E, TUNER F J, VERHOOGEN J. Igneous petrology[M]. New York: McGraw-Hill, 1974: 739. |
| [10] | 罗照华, 周久龙, 黑慧欣, 等. 超级喷发(超级侵入)后成矿作用[J]. 岩石学报, 2014, 30(11): 3131-3154 |
| [11] | KERR A C, ARNDT N T. A note on the IUGS reclassification of the high-Mg and picritic volcanic rocks[J]. Journal of Petrology, 2001, 42(11): 2169-2171. |
| [12] | Le BAS M J. IUGS reclassification of the high-Mg and picritic volcanic rocks[J]. Journal of Petrology, 2000, 41(10): 1467-1470. |
| [13] | Le MAITRE R W, BATEMAN P, DUDEK A, et al. A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Oxford: Blackwell Scientific, 1989. |
| [14] | 徐义刚, 钟孙霖. 峨眉山大火成岩省:地幔柱活动的证据及其熔融条件[J]. 地球化学, 2001, 30(1): 1-9. |
| [15] | WANG M, ZHANG Z C, SANTOSH M, et al. Geochemistry of Late Permian picritic porphyries and associated Pingchuan iron ores, Emeishan Large Igneous Province, Southwest China: constraints on petrogenesis andiron sources[J]. Ore Geology Reviews, 2014, 57: 602-617. |
| [16] | ZHOU M F, CHEN W T, WANG C Y, et al. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China[J]. Geoscience Frontiers, 2013, 4: 481-502. |
| [17] | PANG K N, SHELLNUTT J G, ZHOU M F. The Panzhihua Intrusion, SW China[M]// Layered intrusions. Dordrecht, Heidelberg, New York, London: Springer, 2015: 435-463. |
| [18] | 四川省地质矿产局四川省地质勘查局攀西地质大队. 1∶5万区域地质调查报告(平川幅、田湾幅)[R]. 成都: 四川省地质勘查局攀西地质大队, 1990. |
| [19] | 张帆. 四川省盐源县矿山梁子苦橄质岩床研究及其与铁矿成矿作用关系[D]. 北京: 中国地质大学(北京), 2014. |
| [20] | MARSH B D. Solidification fronts and magmatic evolution[J]. Mineral Magazine, 1996, 60: 5-40 |
| [21] | WANG Z, GAETANI G A. Partitioning of ni between olivine and siliceous eclogite partial melt: experimental constraints on the mantle source of hawaiian basalts[J]. Contributions to Mineralogy and Petrology, 2008, 156(5): 661-678. |
| [22] | AGEE C B, WALKER D. Aluminum partitioning between olivine and ultrabasic silicate liquid to 6 Gpa[J]. Contributions to Mineralogy and Petrology, 1990, 105(3): 243-254. |
| [23] | FLEET M E, MACRAE N D. Partition of Ni between olivine and sulfide and its application to Ni-Cu sulfide deposits[J]. Contributions to Mineralogy and Petrology, 1983, 83(1/2): 75-81. |
| [24] | GIULIANI A, KAMENETSKY V S, KENDRICK M A, et al. Nickel-rich metasomatism of the lithospheric mantle by pre-kimberlitic alkali-S-Cl-rich C-O-H fluids[J]. Contributions to Mineralogy and Petrology, 2013, 165(1): 155-171. |
| [25] | 罗照华. 四川攀西地区层状侵入体中堆晶岩成因的矿物学约束[J]. 地学前缘, 2020, 27(5): 61-69. |
| [26] | OESER M, DOHMEN R, HORN I, et al. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines[J]. Geochimica et Cosmochimica Acta, 2015, 154: 130-150. |
| [27] | ROEDER P L, EMSLIE R F. Olivine-liquid equilibrium[J]. Contributions to Mineralogy and Petrology, 1970, 29(4): 275-289. |
| [28] | LEE C T A, LUFFI P, PLANK T, et al. Constraints on the depths and temperatures of basaltic magma generation on earth and other terrestrial planets using new thermobarometers for mafic magmas[J]. Earth and Planetary Science Letters, 2009, 279(1): 20-33. |
| [29] | FILIBERTO J, DASGUPTA R. Fe2+-Mg partitioning between olivine and basaltic melts: applications to genesis of olivine-phyric shergottites and conditions of melting in the martian interior[J]. Earth and Planetary Science Letters, 2011, 304(3): 527-537. |
| [30] | YANG Z F, ZHOU J H. Can we identify source lithology of basalt?[J]. Scientific Reports, 2013, 3 : 1856. |
| [31] | 王登红, 骆耀南, 傅德明, 等. 四川杨柳坪Cu-Ni-PGE矿区基性-超基性岩的地球化学特征及其含矿性[J]. 地球学报, 2001, 22(2): 135-140. |
| [32] | 刘建华, 刘福田, 何建坤, 等. 攀西古裂谷的地震成像研究: 壳幔构造特征及其演化推断[J]. 中国科学(D辑): 地球科学, 2000, 30(增刊1): 9-15. |
| [1] | 罗照华,杨宗锋,苏尚国,刘翠,江秀敏. 火成岩中的超临界流体晶及其研究意义[J]. 地学前缘, 2019, 26(6): 216-227. |
| [2] | 孙君一,于文佳,唐泽勋,李重,罗照华. 川西拉拉Fe-Cu矿区含矿镁铁质层状岩席的首次发现及其成岩成矿意义[J]. 地学前缘, 2019, 26(1): 313-325. |
| [3] | 邱一冉, 罗照华, 杨宗锋, 李学军, 李解, 程金华, I.V.Vikentyev. 四川米易青皮村镁铁质侵入体的固结过程[J]. 地学前缘, 2016, 23(4): 241-254. |
| [4] | 罗照华, 郭晶, 王秉璋, I.V.Vikentyev, 王涛. 成矿地质异常序列:以青海拉陵灶火中游勘查区为例[J]. 地学前缘, 2016, 23(4): 212-225. |
| [5] | 李解,罗照华,杨宗锋. 攀枝花铁矿朱家包包矿段层状铁矿体的成因:来自矿物结构定量化分析的证据[J]. 地学前缘, 2016, 23(3): 210-220. |
| [6] | 黑慧欣, 罗照华, 程金华, 邱一冉, 邓俊峰, 李解, I.V.Vikentyev. 攀西地区镁铁质岩浆成矿系统的流体动力学模型[J]. 地学前缘, 2015, 22(3): 333-347. |
| [7] | 李德东,罗照华,周久龙,杨宗锋,刘翠. 岩墙厚度对成矿作用的约束:以石湖金矿为例[J]. 地学前缘, 2011, 18(1): 166-178. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
