地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 88-101.DOI: 10.13745/j.esf.sf.2021.9.17
收稿日期:
2020-07-12
修回日期:
2021-03-28
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
李广雪
作者简介:
刘 勇(1975—),男,博士,主要从事海洋地质学与海洋沉积学研究工作。E-mail: denverly@ouc.edu.cn
基金资助:
LIU Yong1,2(), LI Guangxue1,2,*(
)
Received:
2020-07-12
Revised:
2021-03-28
Online:
2022-09-25
Published:
2022-08-24
Contact:
LI Guangxue
摘要:
基于东海北部陆架表层沉积物的泥温、粒度分析与重矿物鉴定数据,结合末次盛冰期(LGM)以来的东海海平面演化阶段分析,提取高海面期以来底层水团承载的沉积重矿物空间分布规律与信息记录。结果表明优势矿物种的迁移路径与区域环流系统密切相关,进而可示踪东海北部物质的大致输运方向。依据透明矿物(普通角闪石、帘石类、稳定矿物)、金属矿物(不透明矿物)、片状矿物及自生矿物等优势重矿物种迁移路径的判断和讨论,将研究区初步划分为5类矿物区,分别为冷涡矿物区(Ⅰ区)、黄海沿岸流与跨陆架流矿物区(Ⅱ区)、长江冲淡水矿物区(Ⅲ区)、暖流矿物区(Ⅳ区)和复合矿物区(Ⅴ区)。Ⅰ区受济州岛西南冷涡影响显著,高含量的自生黄铁矿指示了强还原的沉积环境;Ⅱ区是黄海沿岸流与跨陆架流(ECSC)南向输运老黄河三角洲物质的重要通道,帘石类矿物、金属矿物、片状矿物的含量变化可指示输运的路径;Ⅲ区是长江冲淡水东扩的重要通道,普通角闪石、片状矿物、石榴石为示踪的特征矿物;Ⅳ区是陆架水团混合了台湾暖流和对马暖流水体的区域,区内“洁净”的暖流水阻隔陆源物质向东输运,其西侧为物源供给侧,形成优势矿物低值区,东侧物质供给匮乏,海侵改造沉积出露,重矿物及优势矿物种呈高值;Ⅴ区是区域环流系统季节性变化与强度差异影响下的复合作用区,区内矿物学特征与邻区相比无明显优势。从矿物迁移路径的角度认识东海北部陆架的物质输运与聚集过程,可进一步理解优势矿物示踪意义与区域环流系统动力环境的响应机制。
中图分类号:
刘勇, 李广雪. 东海北部陆架表层沉积物重矿物组合、迁移路径对底层水团的示踪响应研究[J]. 地学前缘, 2022, 29(5): 88-101.
LIU Yong, LI Guangxue. Heavy mineral assemblages and migration paths in the surface sediments of the northern East China Sea shelf: Tracer responses to bottom water masses[J]. Earth Science Frontiers, 2022, 29(5): 88-101.
图1 东海陆架地形、表层沉积物站位及区域环流(据文献[24-25]修改) 等深线单位为m。蓝色阴影表示济州岛西南泥质区(SWCIM)。洋红色箭头分别表示黑潮(Kuroshio)、台湾暖流(TWC)、对马暖流(TSWC)和黄海暖流(YSWC);蓝色箭头表示黄海沿岸流(YSCC),绿色箭头表示长江冲淡水(YDW)。黄色阴影区表示跨东海陆架流(ECSC与CPF)的大致路径和方向。
Fig.1 Schematic map of bathymetry,location of sampling stations and the regional circulation pattern during wintertime in the East China Sea shelf. Modified after [24-25].
图2 研究区表层沉积物平均粒径(A)、砂组分(B)、粉砂组分(C)与黏土组分(D)含量分布图
Fig.2 Distributions of mean grain size (A),sand components (B),silt components (C) and clay components (D) in surface sediments of the study area
研究对象 | 不同频数情况下所含的重矿物 | |||
---|---|---|---|---|
丰富(>90%) | 常见(50%~90%) | 少量(10%~<50%) | 稀少(<10%) | |
重矿物 | 赤铁矿、钛铁矿、角闪石、绿帘石、石榴石、榍石、阳起石、透闪石 | 磁铁矿、褐铁矿、褐帘石、电气石、磷灰石、锆石、十字石、云母 | 绿泥石、直闪石、兰闪石、黄铁矿、蓝晶石、金红石、黝帘石 | 硅线石、锐钛矿、符山石、斜黝帘石、菱铁矿、重晶石、刚玉、碳硅石 |
表1 重矿物种类与频数
Table 1 Types and frequency of heavy-minerals
研究对象 | 不同频数情况下所含的重矿物 | |||
---|---|---|---|---|
丰富(>90%) | 常见(50%~90%) | 少量(10%~<50%) | 稀少(<10%) | |
重矿物 | 赤铁矿、钛铁矿、角闪石、绿帘石、石榴石、榍石、阳起石、透闪石 | 磁铁矿、褐铁矿、褐帘石、电气石、磷灰石、锆石、十字石、云母 | 绿泥石、直闪石、兰闪石、黄铁矿、蓝晶石、金红石、黝帘石 | 硅线石、锐钛矿、符山石、斜黝帘石、菱铁矿、重晶石、刚玉、碳硅石 |
图3 重矿物(A)、普通角闪石(B)、帘石类(C)、石榴石(D)、ZTR指数(E)、榍石(F)分布模式 黑色带箭头的虚线指示优势矿物种的迁移路径。
Fig.3 Distribution patterns of heavy-mineral (A) and dominant minerals,such as hornblende (B),epidotes (C), garnet (D),ZTR index (E) and sphene (F) in the bottom sediments
图4 表层沉积物金属矿物(A)、片状矿物(B)、自生黄铁矿(C)与泥温(D)的分布 黑色箭头虚线表示优势矿物迁移路径。
Fig.4 Distribution patterns of metal mineral (A),platy minerals (B),authigenic pyrite (C) and temperature (D) in the bottom sediments
对比项 | 各分区对比项的值 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
长江干道 (铜陵)[ | 长江口[ | 长江三角 洲[ | 南黄海潮流 沙脊[ | 老黄河 三角洲[ | Ⅰ区 | Ⅱ区 | Ⅲ区 | Ⅳ区 | Ⅴ1亚区 | Ⅴ2亚区 | |||
样品数 | 1 | 1 | 128 | 37 | 44 | 15 | 23 | 19 | 26 | 6 | 6 | ||
角闪石颗粒 含量/% | 55.2 | 62.4 | 33.3 | 35.8 | 46.8 | 17.5 | 46.5 | 51.4 | 27.1 | 42.3 | 37.1 | ||
帘石类颗粒 含量/% | 14.9 | 13.8 | 27.3 | 32.7 | 16.2 | 11.2 | 33.9 | 22.6 | 23.2 | 28.9 | 20.6 | ||
金属矿物 颗粒含量/% | 18.9 | 7.9 | 9.1 | 9.3 | 5.7 | 2.11 | 10.2 | 7.4 | 6.1 | 9.5 | 6.8 | ||
稳定矿物 颗粒含量/% | 5.6 | 3.0 | 1.5 | 3.8 | 3.8 | 2.59 | 6.3 | 4.1 | 2.8 | 4.2 | 3.7 | ||
片状矿物 颗粒含量/% | 1.8 | 7.7 | 10.9 | 6.3 | 5.5 | 12.2 | 1.6 | 2.1 | 3.4 | 1.8 | 2.9 |
表2 研究区优势重矿物平均含量及与泥质体主要物源区的比较
Table 2 The average content of dominant heavy mineral species in the study area and its comparison with the main source area of SWCIM
对比项 | 各分区对比项的值 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
长江干道 (铜陵)[ | 长江口[ | 长江三角 洲[ | 南黄海潮流 沙脊[ | 老黄河 三角洲[ | Ⅰ区 | Ⅱ区 | Ⅲ区 | Ⅳ区 | Ⅴ1亚区 | Ⅴ2亚区 | |||
样品数 | 1 | 1 | 128 | 37 | 44 | 15 | 23 | 19 | 26 | 6 | 6 | ||
角闪石颗粒 含量/% | 55.2 | 62.4 | 33.3 | 35.8 | 46.8 | 17.5 | 46.5 | 51.4 | 27.1 | 42.3 | 37.1 | ||
帘石类颗粒 含量/% | 14.9 | 13.8 | 27.3 | 32.7 | 16.2 | 11.2 | 33.9 | 22.6 | 23.2 | 28.9 | 20.6 | ||
金属矿物 颗粒含量/% | 18.9 | 7.9 | 9.1 | 9.3 | 5.7 | 2.11 | 10.2 | 7.4 | 6.1 | 9.5 | 6.8 | ||
稳定矿物 颗粒含量/% | 5.6 | 3.0 | 1.5 | 3.8 | 3.8 | 2.59 | 6.3 | 4.1 | 2.8 | 4.2 | 3.7 | ||
片状矿物 颗粒含量/% | 1.8 | 7.7 | 10.9 | 6.3 | 5.5 | 12.2 | 1.6 | 2.1 | 3.4 | 1.8 | 2.9 |
[1] |
MORTON A C, HALLSWORTH C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1/2/3/4): 3-29.
DOI URL |
[2] |
SVENDSEN J B, HARTLEY N R. Synthetic heavy mineral stratigraphy: applications and limitations[J]. Marine and Petroleum Geology, 2002, 19(4): 389-405.
DOI URL |
[3] |
GARZANTI E, ANDÒ S, VEZZOLI G. Settling equivalence of detrital minerals and grain-size dependence of sediment composition[J]. Earth and Planetary Science Letters, 2008, 273(1/2): 138-151.
DOI URL |
[4] |
NIE J S, HORTON B K, SAYLOR J E, et al. Integrated provenance analysis of a convergent retroarc foreland system: U-Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley Basin, northern Andes, Colombia[J]. Earth-Science Reviews, 2012, 110(1/2/3/4): 111-126.
DOI URL |
[5] | NECHAEV V, DERKACHEV A N. Heavy-mineral assemblages in quaternary sediments of the Philippine Sea as indicators of subduction/collision-related tectonics[M]// Geology and geophysics of the Philippine Sea. Tokyo: Terra Scientific Publishing Company (Terrapub), 1995: 215-233. |
[6] | DERKACHEV A N, NIKOLAEVA N A. Chapter 17 Multivariate analysis of heavy mineral assemblages of sediments from the marginal seas of the Western Pacific[J]. Developments in Sedimentology, 2007, 58: 439-464. |
[7] |
YANG S Y, WANG Z B, DOU Y G, et al. A review of last glacial sedimentation on the continental shelf of eastern China[J]. Geological Society, London, Memoirs, 2014, 41(1): 293-303.
DOI URL |
[8] | SAITO Y. Sedimentary environment and budget in the East China Sea[J]. Bulletin of Coast Oceanology, 1998, 36: 43-58. |
[9] |
HANEBUTH T, STATTEGGER K, GROOTES P M. Rapid flooding of the sunda shelf: a late-glacial sea-level record[J]. Science, 2000, 288(5468): 1033-1035.
DOI URL |
[10] | LAMBECK K, ROUBY H, PURCELL A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (43): 15296-15303. |
[11] | 李铁刚, 江波, 孙荣涛, 等. 末次冰消期以来东黄海暖流系统的演化[J]. 第四纪研究, 2007, 27(6): 945-954. |
[12] |
DOU Y G, YANG S Y, LIM D I, et al. Provenance discrimination of last deglacial and Holocene sediments in the southwest of Cheju Island, East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 422: 25-35.
DOI URL |
[13] |
LI G X, LI P, LIU Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139: 390-405.
DOI URL |
[14] | 刘健, 李绍全, 王圣洁, 等. 末次冰消期以来黄海海平面变化与黄海暖流的形成[J]. 海洋地质与第四纪地质, 1999, 19(1): 13-24. |
[15] | 刘健, 秦华峰, 孔祥淮, 等. 黄东海陆架及朝鲜海峡泥质沉积物的磁学特征比较研究[J]. 第四纪研究, 2007, 27(6): 1031-1039. |
[16] |
WANG H Y, ZHANG L L, XIANG R, et al. Holocene paleoenvironmental changes in mud area southwest off Cheju Island, East China Sea: evidence from benthic foraminiferal assemblages and stable isotope records[J]. Marine Geology, 2020, 429: 106319.
DOI URL |
[17] |
DEMASTER D J, MCKEE B A, NITTROUER C A, et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental-shelf deposits in the East China Sea[J]. Continental Shelf Research, 1985, 4(1/2): 143-158.
DOI URL |
[18] |
ALEXANDER C R, DEMASTER D J, NITTROUER C A. Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea[J]. Marine Geology, 1991, 98(1): 51-72.
DOI URL |
[19] | 申顺喜, 陈丽蓉, 高良, 等. 南黄海冷涡沉积和通道沉积的发现[J]. 海洋与湖沼, 1993, 24(6): 563-570. |
[20] |
MILLIMAN J D, BEARDSLEY R C, YANG Z S, et al. Modern Huanghe-derived muds on the outer shelf of the East China Sea: identification and potential transport mechanisms[J]. Continental Shelf Research, 1985, 4(1/2): 175-188.
DOI URL |
[21] |
LEE H J, CHOUGH S K. Sediment distribution, dispersal and budget in the Yellow Sea[J]. Marine Geology, 1989, 87(2/3/4): 195-205.
DOI URL |
[22] |
LIU J, ZHU R X, LI G X. Rock magnetic properties of the fine-grained sediment on the outer shelf of the East China Sea: implication for provenance[J]. Marine Geology, 2003, 193 (3/4), 195-206.
DOI URL |
[23] | 向荣, 杨作升, SAITO Y, 等. 海洋科学: 济州岛西南泥质区近2300 a来环境敏感粒度组分记录的东亚冬季风变化[J]. 中国学术期刊文摘, 2007, 13(5): 97-98. |
[24] | YUAN D L, HSUEH Y. Dynamics of the cross-shelf circulation in the Yellow and East China Seas in winter[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2010, 57(19/20): 1745-1761. |
[25] |
LIU S D, QIAO L L, LI G X, et al. Distribution and cross-front transport of suspended particulate matter over the inner shelf of the East China Sea[J]. Continental Shelf Research, 2015, 107: 92-102.
DOI URL |
[26] | 李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008: 63-65. |
[27] |
YUAN D L, ZHU J R, LI C Y, et al. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations[J]. Journal of Marine Systems, 2008, 70(1/2): 134-149.
DOI URL |
[28] | YUAN D L, QIAO F L, SU J. Cross-shelf penetrating fronts off the southeast coast of China observed by MODIS[J]. Geophysical Research Letters, 2005, 32: L19603. |
[29] | HE L, LI Y, ZHOU H, et al. Variability of cross-shelf penetrating fronts in the East China Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2010, 57(19/20): 1820-1826. |
[30] |
HOSHIKA A, TANIMOTO T, MISHIMA Y, et al. Variation of turbidity and particle transport in the bottom layer of the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 443-455.
DOI URL |
[31] |
DONG L X, GUAN W B, CHEN Q, et al. Sediment transport in the Yellow Sea and East China Sea[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 248-258.
DOI URL |
[32] |
PANG C G, LI K, HU D X. Net accumulation of suspended sediment and its seasonal variability dominated by shelf circulation in the Yellow and East China Seas[J]. Marine Geology, 2016, 371: 33-43.
DOI URL |
[33] | QU TD, HU D X. Upwelling and sedimentation dynamics Ⅱ. A simple model[J]. Journal of Oceanology and Limnology, 1993, 4: 289-295. |
[34] |
YANAGI T, SHIMIZU T, MATSUNO T. Baroclinic eddies south of Cheju Island in the East China Sea[J]. Journal of Oceanography, 1996, 52(6): 763-769.
DOI URL |
[35] | 胡敦欣, 丁宗信, 熊庆成. 东海北部一个夏季气旋型涡旋的初步分析[G]//海洋科学集刊. 北京: 科学出版社, 1984, 21: 87-99. |
[36] | MANGE M A, MAURER H F W. Heavy minerals in colour[M]. London: Chapman and Hall, 1992: 4-10. |
[37] | 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987: 38-60. |
[38] | 李广雪, 杨子赓, 刘勇. 中国东部海域海底沉积环境成因研究[M]. 北京: 科学出版社, 2005: 17-29. |
[39] |
QIN Y C, XUE C T, JIANG X J. Tidal Current-dominated depositional environments in the central-northern Yellow Sea as revealed by heavy-mineral and grain-size dispersals[J]. Marine Geology, 2018, 398: 59-72.
DOI URL |
[40] | 陈丽蓉. 中国海沉积矿物学[M]. 北京: 海洋出版社, 2008: 121-131. |
[41] | 张凯棣, 李安春, 董江, 等. 东海表层沉积物碎屑矿物组合分布特征及其物源环境指示[J]. 沉积学报, 2016, 34(5): 902-911. |
[42] |
WILKIN R T, BARNES H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
DOI URL |
[43] | FANG G H, ZHAO B R, ZHU Y H. Water volume transport through the Taiwan Strait and the continental skelf of the East China Sea measured with current meters[M]// Oceanography of Asian Marginal Seas. Amsterdam: Elsevier, 1991: 345-358. |
[44] | 王中波, 杨守业, 李萍, 等. 长江水系沉积物碎屑矿物组成及其示踪意义[J]. 沉积学报, 2006, 24(4): 570-578. |
[45] | 王孟瑶, 金秉福, 岳伟. 长江口表层沉积物重矿物在不同粒级中的分布与研究意义[J]. 海洋学报, 2019, 41(11): 89-100. |
[46] | 窦衍光, 王昆山, 王国庆, 等. 长江水下三角洲沉积物碎屑矿物研究[J]. 海洋科学, 2007, 31(4): 22-26, 31. |
[47] | 王昆山, 姜晓黎, 叶青, 等. 南黄海潮流沙脊区表层沉积物重矿物分布及来源[J]. 海洋地质与第四纪地质, 2013, 33(5): 1-11. |
[48] | 王昆山, 石学法, 林振宏. 南黄海和东海北部陆架重矿物组合分区及来源[J]. 海洋科学进展, 2003, 21(1): 31-40. |
[49] | 潘玉球, 黄树生. 水团相互作用与东海高密水环流的演变[J]. 东海海洋, 1997, 15(2): 1-14. |
[50] | 邹娥梅, 郭炳火, 汤毓祥, 等. 秋季南黄海水文特征及海水的混合与交换[J]. 海洋学报, 1999, 21(5): 12-21. |
[51] | 王昆山, 金秉福, 石学法, 等. 杭州湾表层沉积物碎屑矿物分布及物质来源[J]. 海洋科学进展, 2013, 31(1): 95-104. |
[52] | CHEN C T A, SHEU D D. Does the Taiwan warm current originate in the Taiwan strait in wintertime?[J]. Journal of Geophysical Research Atmospheres, 2006, 111(C4): C04005. |
[53] | ZHU J R, CHEN C S, DING P X, et al. Does the Taiwan warm current exist in winter?[J]. Geophysical Research Letters, 2004, 31(12): L12302. |
[54] | YUAN Y C, SU J L, XIA S Y. Three dimensional diagnostic calculation of circulation over the East China Sea shelf[J]. Acta Oceanologica Sinica, 1987, 6 (Suppl 1): 36-50. |
[55] | 郭炳火, 李兴宰, 李载学. 夏季对马暖流区黑潮水与陆架水的相互作用: 兼论对马暖流的起源[J]. 海洋学报, 1998, 20(5): 1-12. |
[56] | 于非, 臧家业, 郭炳火, 等. 黑潮水入侵东海陆架及陆架环流的若干现象[J]. 海洋科学进展, 2002, 20(3): 21-28. |
[57] | 郭志刚, 杨作升, 张东奇, 等. 冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用[J]. 海洋学报, 2002, 24(5): 71-80. |
[58] |
CHANG P H. A numerical study on the Changjiang diluted water in the Yellow and East China Seas[J]. Journal of Geophysical Research Atmospheres, 2003, 108(C9): 3299.
DOI URL |
[59] | XIA C S, QIAO F L, YANG Y Z, et al. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model[J]. Journal of Geophysical Research Atmospheres, 2006, 111(C11): C11S03. |
[1] | 由文智, 向芳, 黄恒旭, 杨坤美, 喻显涛, 丁力, 杨奇. 青藏高原东缘宜宾地区第四纪河流沉积物中铁质重矿物特征及物源意义[J]. 地学前缘, 2022, 29(4): 278-292. |
[2] | 杨华, 刘自亮, 朱筱敏, 邓秀芹, 张忠义, 齐亚林. 鄂尔多斯盆地西南缘上三叠统延长组物源与沉积体系特征[J]. 地学前缘, 2013, 20(2): 10-18. |
[3] | 冉波 王成善 朱利东 曹珂 严宝年 汪满福. 距今40~30 Ma时期青藏高原北缘酒西盆地沉积物重矿物分析和构造意义[J]. 地学前缘, 2008, 15(5): 388-398. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||