地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 55-72.DOI: 10.13745/j.esf.sf.2022.1.2
马畅1(), 葛家旺1,2,*(
), 赵晓明1,2, 廖晋3, 姚哲3, 朱继田3, 方小宇2, 向柱1
收稿日期:
2021-08-10
修回日期:
2021-09-28
出版日期:
2022-07-25
发布日期:
2022-07-28
通信作者:
葛家旺
作者简介:
马 畅(1997—),男,硕士研究生,主要从事沉积学方面研究工作。E-mail: swpumc@163.com
基金资助:
MA Chang1(), GE Jiawang1,2,*(
), ZHAO Xiaoming1,2, LIAO Jin3, YAO Zhe3, ZHU Jitian3, FANG Xiaoyu2, XIANG Zhu1
Received:
2021-08-10
Revised:
2021-09-28
Online:
2022-07-25
Published:
2022-07-28
Contact:
GE Jiawang
摘要:
陆架边缘迁移轨迹综合受控于构造、物源、海平面和气候等多种因素,其迁移演化与深水沉积体系发育关系密切。陆架边缘迁移规律及沉积物输送体制与深水砂体预测是当前国际地学领域的热点议题。本文通过基于琼东南盆地新采集的高精度地震资料,定量表征了第四系陆架边缘轨迹,识别了低角度缓慢上升型、中等角度上升型和高角度急剧上升型等3类陆架边缘轨迹类型。2.4 Ma以来,陆架边缘轨迹时空演化可分为3个阶段且具有侧向差异性:2.4~1.9 Ma以低角度缓慢上升型为主,1.9~0.8 Ma西北部以低角度缓慢上升型为主,东北部则以中等角度上升型为主,0.8 Ma至今西北部以中等角度上升型为主,东北部以高角度急剧上升型为主。琼东南盆地第四系陆架边缘迁移轨迹研究表明:当陆架边缘轨迹角0°<α<4°时,陆坡区峡谷规模较小且下切浅,深海平原区发育多期大型海底扇沉积,块体搬运沉积(MTDs)较少;当4°<α<35°时,陆坡区峡谷规模有所增加,深海平原区海底扇沉积与块体搬运沉积均有出现;当35°<α<90°时,陆坡区峡谷发育较少但下切深,深水平原区沉积以大型块体搬运沉积为主,海底扇几乎不发育。琼东南盆地更新世以来气温不断下降,以及东亚冬季风的显著增强,物源供给增强加之海平面的下降进而导致了西北部陆架边缘表现为进积特征;研究区东北部的断裂活动频繁以及物源供给弱,导致了研究区东北部陆坡推进距离远远小于研究区西北部且发育多期次块体搬运沉积物。以上认识对南海北部陆架边缘体系及深水扇预测具有一定的理论意义。
中图分类号:
马畅, 葛家旺, 赵晓明, 廖晋, 姚哲, 朱继田, 方小宇, 向柱. 南海北部琼东南盆地第四系陆架边缘轨迹迁移及深水沉积模式[J]. 地学前缘, 2022, 29(4): 55-72.
MA Chang, GE Jiawang, ZHAO Xiaoming, LIAO Jin, YAO Zhe, ZHU Jitian, FANG Xiaoyu, XIANG Zhu. Quaternary Qiongdongnan Basin in South China Sea: Shelf-edge trajectory migration and deep-water depositional models[J]. Earth Science Frontiers, 2022, 29(4): 55-72.
图1 斜坡发育样式(a-c)与陆架边缘迁移轨迹样式(d-f)(改编自文献[4])
Fig.1 Slope development patterns (a-c) and shelf-edge trajectory migration patterns (d-f). Modified from [4].
气候条件 | 物源供给 | 可容纳空间 | 沉积模式 |
---|---|---|---|
寒冷干旱 | 低物源供给 | 低可容纳空间 | 陆坡发育砂岩、浊积岩,富含砂质的海底扇 |
中可容纳空间 | 发育海底水道峡谷,泥质的斜坡和盆地平原 | ||
高可容纳空间 | 深水区沉积大量泥质运输体系 | ||
高物源供给 | 低可容纳空间 | 陆坡发育砂岩、浊积岩,富含砂质的海底扇 | |
中可容纳空间 | 发育浊积岩朵叶体、水道-天然堤复合体,三角洲前缘,高水位情况下的浊积扇朵叶-水道充填复合体的海底扇 | ||
高可容纳空间 | 三角洲前缘和海侵形成的泥岩 | ||
温暖潮湿 | 低物源供给 | 低可容纳空间 | 陆坡发育厚层砂体,砂质盆底扇 |
中可容纳空间 | 泥质陆坡、盆底扇平原 | ||
高物源供给 | 低可容纳空间 | 分布面积广泛、厚度大、体积大的盆底扇,砂质河道充填 | |
中可容纳空间 | 砂泥交互的沉积体系,海底扇有浊积岩朵叶、水道充填,深水泥质沉积 |
表1 陆架边缘-深水体系沉积模式三端员类型及特征(据文献[4])
Table 1 List of the tri-factor combinations for various shelf-edge and deep-water depositional models. Modified after [4].
气候条件 | 物源供给 | 可容纳空间 | 沉积模式 |
---|---|---|---|
寒冷干旱 | 低物源供给 | 低可容纳空间 | 陆坡发育砂岩、浊积岩,富含砂质的海底扇 |
中可容纳空间 | 发育海底水道峡谷,泥质的斜坡和盆地平原 | ||
高可容纳空间 | 深水区沉积大量泥质运输体系 | ||
高物源供给 | 低可容纳空间 | 陆坡发育砂岩、浊积岩,富含砂质的海底扇 | |
中可容纳空间 | 发育浊积岩朵叶体、水道-天然堤复合体,三角洲前缘,高水位情况下的浊积扇朵叶-水道充填复合体的海底扇 | ||
高可容纳空间 | 三角洲前缘和海侵形成的泥岩 | ||
温暖潮湿 | 低物源供给 | 低可容纳空间 | 陆坡发育厚层砂体,砂质盆底扇 |
中可容纳空间 | 泥质陆坡、盆底扇平原 | ||
高物源供给 | 低可容纳空间 | 分布面积广泛、厚度大、体积大的盆底扇,砂质河道充填 | |
中可容纳空间 | 砂泥交互的沉积体系,海底扇有浊积岩朵叶、水道充填,深水泥质沉积 |
图4 琼东南盆地第四系层序界面特征(测线1和测线10位置见图2)
Fig.4 Sequence stratigraphic model of the Quaternary Qiongdongnan Basin showing the four sequence boundaries (see Fig.2 for survey line locations)
图6 琼东南盆地第四系陆架边缘加积与进积距离交汇图(a)及各剖面陆架边缘轨迹角度统计图(b)
Fig.6 Scatter plots of shelf-edge accretion distance vs. progradation distance (a) and related shelf-edge trajectory angle statistics for the three stratigraphic sequences of the Quaternary Qiongdongnan Basin
图7 琼东南盆地第四系典型剖面陆架边缘轨迹迁移图(测线1和10见图2)
Fig.7 Sectional views of shelf-edge trajectory migrations on the profiles of survey lines 1 (a) and 10 (b) in the Quaternary Qiongdongnan Basin (survey line locations see Fig.2)
图8 琼东南盆地第四系陆架边缘加积距离统计图(a)及陆架边缘进积距离统计图(b)
Fig.8 Statistics of shelf-edge accretion (a) and progradation (b) distances for the three stratigraphic sequences of the Quaternary Qiongdongnan Basin
测线 | 层位 | A/m | P/m | Ra/ (m·Ma-1) | Rp/ (m·Ma-1) | Fc/ (m2·Ma-1) |
---|---|---|---|---|---|---|
1 | T27-T20 | 174.66 | 6 237.50 | 194.07 | 6 930.56 | 1 210.49 |
T20-T14 | 243.34 | 11 362.50 | 243.34 | 11 362.50 | 2 764.95 | |
T14-T0 | 826.40 | 6 737.50 | 1 033.00 | 8 421.88 | 6 959.84 | |
2 | T27-T20 | 125.48 | 9 287.50 | 139.42 | 10 319.44 | 1 294.88 |
T20-T14 | 354.60 | 8 712.50 | 354.60 | 8 712.50 | 3 089.45 | |
T14-T0 | 756.64 | 5 587.50 | 945.80 | 6 984.38 | 5 284.66 | |
3 | T27-T20 | 51.12 | 7 300.00 | 56.80 | 8 111.11 | 414.64 |
T20-T14 | 369.52 | 10 650.00 | 369.52 | 10 650.00 | 3 935.39 | |
T14-T0 | 701.36 | 2 037.50 | 876.70 | 2 546.88 | 1 786.28 | |
4 | T27-T20 | 162.00 | 5 575.00 | 180.00 | 6 194.44 | 1 003.50 |
T20-T14 | 293.84 | 9 212.50 | 293.84 | 9 212.50 | 2 707.00 | |
T14-T0 | 708.16 | 5 150.00 | 885.20 | 6 437.50 | 4 558.78 | |
5 | T27-T20 | 105.46 | 4 862.50 | 117.18 | 5 402.78 | 569.78 |
T20-T14 | 105.36 | 8 362.50 | 105.36 | 8 362.50 | 881.07 | |
T14-T0 | 853.04 | 1 712.50 | 1 066.30 | 2 140.63 | 1 826.04 | |
6 | T27-T20 | 62.96 | 3 962.50 | 69.96 | 4 402.78 | 277.20 |
T20-T14 | 199.40 | 4 175.00 | 199.40 | 4175.00 | 832.50 | |
T14-T0 | 988.44 | 1 587.50 | 1 235.55 | 1 984.38 | 1 961.44 | |
7 | T27-T20 | 58.68 | 3 600.00 | 65.20 | 4 000.00 | 234.72 |
T20-T14 | 358.52 | 4 662.50 | 358.52 | 4 662.50 | 1 671.60 | |
T14-T0 | 768.80 | 1 225.00 | 961.00 | 1 531.25 | 1 177.23 | |
8 | T27-T20 | 263.76 | 2 850.00 | 293.07 | 3 166.67 | 835.24 |
T20-T14 | 136.00 | 2 275.00 | 136.00 | 2 275.00 | 309.40 | |
T14-T0 | 751.48 | 2 675.00 | 939.35 | 3 343.75 | 2 512.76 | |
9 | T27-T20 | 79.52 | 4 812.50 | 88.36 | 5 347.22 | 425.21 |
T20-T14 | 84.24 | 1 687.50 | 84.24 | 1 687.50 | 142.16 | |
T14-T0 | 768.48 | 1 187.5 | 960.60 | 1 484.38 | 1 140.71 | |
10 | T27-T20 | 95.64 | 2 387.50 | 106.27 | 2 652.78 | 253.71 |
T20-T14 | 77.88 | 4 250.00 | 77.88 | 4 250.00 | 330.99 | |
T14-T0 | 768.04 | 25.00 | 960.05 | 31.25 | 24.00 | |
11 | T27-T20 | 95.32 | 3 387.50 | 105.91 | 3 763.89 | 358.77 |
T20-T14 | 94.44 | 3 850.00 | 94.44 | 3 850.00 | 363.59 | |
T14-T0 | 762.44 | 987.50 | 953.05 | 1 234.38 | 941.14 | |
12 | T27-T20 | 123.28 | 612.50 | 136.98 | 680.56 | 83.90 |
T20-T14 | 294.28 | 262.50 | 294.28 | 262.50 | 77.25 | |
T14-T0 | 647.92 | 150.00 | 809.90 | 187.50 | 121.49 |
表2 琼东南盆地物源供给参数统计表
Table 2 Statistical table of sediment supply parameters for the Qiongdongnan Basin
测线 | 层位 | A/m | P/m | Ra/ (m·Ma-1) | Rp/ (m·Ma-1) | Fc/ (m2·Ma-1) |
---|---|---|---|---|---|---|
1 | T27-T20 | 174.66 | 6 237.50 | 194.07 | 6 930.56 | 1 210.49 |
T20-T14 | 243.34 | 11 362.50 | 243.34 | 11 362.50 | 2 764.95 | |
T14-T0 | 826.40 | 6 737.50 | 1 033.00 | 8 421.88 | 6 959.84 | |
2 | T27-T20 | 125.48 | 9 287.50 | 139.42 | 10 319.44 | 1 294.88 |
T20-T14 | 354.60 | 8 712.50 | 354.60 | 8 712.50 | 3 089.45 | |
T14-T0 | 756.64 | 5 587.50 | 945.80 | 6 984.38 | 5 284.66 | |
3 | T27-T20 | 51.12 | 7 300.00 | 56.80 | 8 111.11 | 414.64 |
T20-T14 | 369.52 | 10 650.00 | 369.52 | 10 650.00 | 3 935.39 | |
T14-T0 | 701.36 | 2 037.50 | 876.70 | 2 546.88 | 1 786.28 | |
4 | T27-T20 | 162.00 | 5 575.00 | 180.00 | 6 194.44 | 1 003.50 |
T20-T14 | 293.84 | 9 212.50 | 293.84 | 9 212.50 | 2 707.00 | |
T14-T0 | 708.16 | 5 150.00 | 885.20 | 6 437.50 | 4 558.78 | |
5 | T27-T20 | 105.46 | 4 862.50 | 117.18 | 5 402.78 | 569.78 |
T20-T14 | 105.36 | 8 362.50 | 105.36 | 8 362.50 | 881.07 | |
T14-T0 | 853.04 | 1 712.50 | 1 066.30 | 2 140.63 | 1 826.04 | |
6 | T27-T20 | 62.96 | 3 962.50 | 69.96 | 4 402.78 | 277.20 |
T20-T14 | 199.40 | 4 175.00 | 199.40 | 4175.00 | 832.50 | |
T14-T0 | 988.44 | 1 587.50 | 1 235.55 | 1 984.38 | 1 961.44 | |
7 | T27-T20 | 58.68 | 3 600.00 | 65.20 | 4 000.00 | 234.72 |
T20-T14 | 358.52 | 4 662.50 | 358.52 | 4 662.50 | 1 671.60 | |
T14-T0 | 768.80 | 1 225.00 | 961.00 | 1 531.25 | 1 177.23 | |
8 | T27-T20 | 263.76 | 2 850.00 | 293.07 | 3 166.67 | 835.24 |
T20-T14 | 136.00 | 2 275.00 | 136.00 | 2 275.00 | 309.40 | |
T14-T0 | 751.48 | 2 675.00 | 939.35 | 3 343.75 | 2 512.76 | |
9 | T27-T20 | 79.52 | 4 812.50 | 88.36 | 5 347.22 | 425.21 |
T20-T14 | 84.24 | 1 687.50 | 84.24 | 1 687.50 | 142.16 | |
T14-T0 | 768.48 | 1 187.5 | 960.60 | 1 484.38 | 1 140.71 | |
10 | T27-T20 | 95.64 | 2 387.50 | 106.27 | 2 652.78 | 253.71 |
T20-T14 | 77.88 | 4 250.00 | 77.88 | 4 250.00 | 330.99 | |
T14-T0 | 768.04 | 25.00 | 960.05 | 31.25 | 24.00 | |
11 | T27-T20 | 95.32 | 3 387.50 | 105.91 | 3 763.89 | 358.77 |
T20-T14 | 94.44 | 3 850.00 | 94.44 | 3 850.00 | 363.59 | |
T14-T0 | 762.44 | 987.50 | 953.05 | 1 234.38 | 941.14 | |
12 | T27-T20 | 123.28 | 612.50 | 136.98 | 680.56 | 83.90 |
T20-T14 | 294.28 | 262.50 | 294.28 | 262.50 | 77.25 | |
T14-T0 | 647.92 | 150.00 | 809.90 | 187.50 | 121.49 |
图9 琼东南盆地第四系陆架边缘加积速率(Ra)与进积速率(Rp)交汇图(a)及沉积物净通量(Fc)与进积速率(Rp)交汇图(b)
Fig.9 Scatter plots of shelf-edge accretion rate vs. progradation rate (a) and sediment net flux vs. progradation rate (b) in the eastern and western parts of the three stratigraphic sequences of the Quaternary Qiongdongnan Basin
图10 琼东南盆地2.4 Ma以来陆架边缘坡折线时空演化
Fig.10 Schematic diagram showing the temporo-spatial changes of shelf edge trajectories in the Qiongdongnan Basin since 2.4 Ma
图11 琼东南盆地第四系陆架边缘迁移轨迹控制因素(海平面变化据[20,37];物源供给据[30-31,34-35,44];构造沉降(以西北部为主)据[23-24];气候变化据[38,41⇓-43])
Fig.11 Factors controlling the shelf-edge trajectory in the Quaternary Qiongdongnan Basin. Data of sea level change from [20,37]; source supply from [30,31,34-35,44]; tectonic subsidence from [23-24]; climate change from [38,41⇓-43].
图12 琼东南盆地第四系典型剖面1原始剖面及沉积体系解释图(地震剖面1位置见图2)
Fig.12 Profile (top panel) and depositional interpretation (bottom panel) on the profile of survey line 1 in the Quaternary Qiongdongnan Basin (see Fig.2 for location of survey line 1)
图13 琼东南盆地第四系典型剖面6和10原始剖面及沉积体系解释图(地震剖面6和10位置见图2)
Fig.13 Depositional interpretations on the profiles of survey lines 6 (top panel) and 10 (bottom panel) in the Quaternary Qiongdongnan Basin (survey line locations shown in Fig.2)
[1] | HELLAND-HANSEN W, MARTINSEN O J. Shoreline trajectories and sequences; description of variable depositional-dip scenarios[J]. Journal of Sedimentary Research, 1996, 66(4): 670-688. |
[2] | RYAN M C, HELLAND-HANSEN W, JOHANNESSEN E P, Erosional vs. et al. accretionary shelf margins: the influence of margin type on deep-water sedimentation: an example from the Porcupine Basin, offshore western Ireland[J]. Basin Research, 2010, 21(5): 676-703. |
[3] | GONG C L, WANG Y M, STEEL R J, et al. Growth styles of shelf-margin clinoforms: prediction of sand- and sediment-budget partitioning into and across the shelf[J]. Journal of Sedimentary Research, 2015, 85(3): 209-229. |
[4] | GONG C L, RONALD J S, WANG Y M, et al. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas[J]. Earth-Science Reviews, 2016, 154: 72-101. |
[5] | CHEN S, STEEL R J, OLARIU C, et al. Growth of the late miocene to pliocene paleo-orinoco shelf-margin prism[J]. Bulletin of the Geological Society of America, 2018, 130(1/2): 35-43. |
[6] | 何云龙. 琼东南盆地陆坡区重力流沉积特征及其成因机制[D]. 武汉: 中国地质大学(武汉), 2012. |
[7] | 任金锋. 琼东南盆地陆架边缘斜坡地形的定量演化过程[D]. 武汉: 中国地质大学(武汉), 2016. |
[8] | 刘晓锋. 琼东南盆地深水区沉积古环境和物源演化[D]. 青岛: 中国海洋大学, 2015. |
[9] | LI S T, LIN C S, ZHANG Q M, et al. Episodic rifting of continental marginal basins and tectonic events since 10 Ma in the South China Sea[J]. Chinese Science Bulletin, 1999, 44(1): 10-22. |
[10] | XIE X N, DIETMAR MüLLER R, JIANYE R, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2007, 247(3): 129-144. |
[11] | 龚再升. 中国近海含油气盆地新构造运动与油气成藏[J]. 地球科学: 中国地质大学学报, 2004, 29(5): 513-517. |
[12] | 何云龙, 解习农, 李俊良, 等. 琼东南盆地陆坡体系发育特征及其控制因素[J]. 地质科技情报, 2010, 29(2): 118-122. |
[13] | 解习农, 孙志鹏, 张道军, 等. 琼东南盆地深水峡谷体系沉积充填及有利储层预测[Z]. 中国广东广州: 2015. 8. |
[14] | 赵蒙维. 琼东南盆地新生代古海洋环境演变[D]. 青岛: 中国海洋大学, 2013. |
[15] | 雷振宇, 苏明, 张莉, 等. 南海北部陆坡琼东南盆地晚中新世以来沉积物来源及输送样式[J]. 海洋学研究, 2016, 34(2): 35-42. |
[16] | VAIL P R. The stratigraphic signatures of tectonics, eustacy and sedimentology an overview[J]. Cycles & Events in Stratigraphy. 1991, 23(1): 8-41 |
[17] | PYLES D R, SYVITSKI J, SLATT R M. Defining the concept of stratigraphic grade and applying it to stratal (reservoir) architecture and evolution of the slope-to-basin profile: an outcrop perspective[J]. Marine and Petroleum Geology, 2011, 28(3): 675-697. |
[18] | 陈宏言, 孙志鹏, 翟世奎, 等. 琼东南盆地井震地层对比分析及区域地层格架的建立[J]. 海洋学报. 2015, 37(5): 1-14. |
[19] | 杜同军. 琼东南盆地层序地层和深水区沉积充填特征[D]. 青岛: 中国海洋大学, 2013. |
[20] | 谢金有, 祝幼华, 李绪深, 等. 南海北部大陆架莺琼盆地新生代海平面变化[J]. 海相油气地质, 2012, 17(1): 49-58. |
[21] | 孙辉. 南海西北部深水区重力流沉积体系特征及其控制因素分析[D]. 武汉: 中国地质大学(武汉), 2015. |
[22] | ZHUO H, WANG Y, SUN Z, et al. Along-strike variability in shelf-margin morphology and long-term growth pattern: a case study from the northern margin of the South China Sea[J]. Basin Research, 2019, 31(3): 431-460. |
[23] | 魏魁生, 崔旱云, 叶淑芬, 等. 琼东南盆地高精度层序地层学研究[J]. 地球科学: 中国地质大学学报, 2001, 26(1): 59-66. |
[24] | 万玲, 姚伯初, 吴能友, 等. 南海西部海域新生代地质构造[J]. 海洋地质与第四纪地质, 2005, 25(2): 45-52. |
[25] | 张云帆, 孙珍, 郭兴伟, 等. 琼东南盆地新生代沉降特征[J]. 热带海洋学报, 2008, 27(5): 30-36. |
[26] | 袁玉松, 杨树春, 胡圣标, 等. 琼东南盆地构造沉降史及其主控因素[J]. 地球物理学报, 2008, 51(2): 376-383. |
[27] | 田姗姗. 琼东南盆地裂后期构造沉降分析及古地貌恢复[D]. 武汉: 中国地质大学(武汉), 2010. |
[28] | 秦志亮. 南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D]. 青岛: 中国科学院海洋研究所, 2012. |
[29] | 李亚敏, 施小斌, 徐辉龙, 等. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制[J]. 吉林大学学报(地球科学版), 2012, 42(1): 47-57. |
[30] | CLIFT P D, SUN Z. The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea: implications for Tibetan uplift and monsoon intensification[J]. Journal of Geophysical Research, 2006, 111: B06405. |
[31] | WAN S, LI A, CLIFT P D, et al. Development of the East Asian summer monsoon: evidence from the sediment record in the South China Sea since 8.5 Ma[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 241(1): 139-159. |
[32] | ZHAO R, CHEN S, STEEL R J, et al. A model for oblique accretion on the South China Sea margin: Red River (Song Hong) sediment transport into Qiongdongnan Basin since Upper Miocene[J]. Marine Geology, 2019, 416: 106001. |
[33] | 刘志飞, 赵玉龙, 李建如, 等. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化[J]. 中国科学(D辑: 地球科学), 2007, 37(9): 1176-1184. |
[34] |
邵磊, 李昂, 吴国瑄, 等. 琼东南盆地沉积环境及物源演变特征[J]. 石油学报, 2010, 31(4): 548-552.
DOI |
[35] | SHI X, KOHN B, SPENCER S, et al. Cenozoic denudation history of southern Hainan Island, South China Sea: constraints from low temperature thermochronology[J]. Tectonophysics. 2011, 504(1-4): 100-115. |
[36] | ZHUO H T, WANG Y M, SHI H S, et al. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: evidence from 3D seismic data[J]. Quaternary Science Reviews, 2015, 129: 128-146. |
[37] | STOW D A V, HOWELL D G, NELSON C H. Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems[J]. Geo-Marine Letters, 1984, 3(2): 57-64. |
[38] | 金海燕, 翦知湣. 中更新世气候转型期南海北部和南部的气候变化差异[J]. 第四纪研究, 2008, 28(3): 381-390. |
[39] | 张一凡, 刘东生, 张训华. 琼东南盆地新生代孢粉组合及其古气候意义[J]. 海洋地质与第四纪地质, 2017, 37(1): 93-101. |
[40] | 黄翡, 孙湘君. 南海北部更新世高分辨率孢粉序列与气候变化[J]. 微体古生物学报, 2002, 19(3): 256-262. |
[41] | 李小洁. 南海北部沉积物记录的早更新世气候变化[D]. 北京: 中国科学院大学, 2015. |
[42] | 冯文科, 黎维峰. 南海北部深海平原晚更新世以来沉积环境和古气候变化[J]. 海洋地质与第四纪地质. 1986, 6(3): 11-26. |
[43] | CLARK P U, ARCHER D, POLLARD D, et al. The middle Pleistocene transition: characteristics, mechanisms, and implication for long-term changes in atmospheric pCO2[J]. Quaternary Science Reviews, 2006, 25(23): 3150-3184. |
[44] | ZHAO Z, SUN Z, WANG Z, et al. The high resolution sedimentary filling in Qiongdongnan Basin, Northern South China Sea[J]. Marine Geology, 2015, 361: 11-24. |
[45] | 赵晓明, 刘丽, 谭程鹏, 等. 海底水道体系沉积构型样式及控制因素: 以尼日尔三角洲陆坡区为例[J]. 古地理学报, 2018, 20(5): 825-840. |
[46] | 赵晓明, 葛家旺, 谭程鹏, 等. 深海水道储层构型及其对同沉积构造响应机理的研究现状与展望[J]. 中国海上油气, 2019, 3(5): 1-12. |
[47] | ZHAO X M, LI M H, QI K, et al. Development of a distinct submarine depositional system on a topographically complex Niger Delta slope[J]. Geological Journal, 2020, 55(5): 3732-3747. |
[48] | ZHAO X M, QI K, PATACCI M, et al. Submarine channel network evolution above an extensive mass-transport complex: a 3D seismic case study from the Niger delta continental slope[J]. Marine and Petroleum Geology, 2019, 104: 231-248. |
[49] | LUO J, ZHU P, GEOMATICS. Gravity induced deposits in the continental slope of Qiongdongnan Basin based on ultrahigh resolution AUV data[J]. Geological Science and Technology Information, 2019, 38(6): 42-50. |
[50] | CHENG C, JIANG T, KUANG Z, et al. Seismic characteristics and distributions of Quaternary mass transport deposits in the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 129: 105118. |
[51] | 杜浩, 石万忠, 梁金强, 等. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响[J]. 石油地球物理勘探, 2021, 56(4): 869-881. |
[52] |
孙启良, 解习农, 吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 2021, 28(2): 258-270.
DOI |
[1] | 陈雯霖, 郑求根, 黄一鸣, 张懿, 林畅松. 南海南缘礼乐盆地在南海扩张前的位置恢复[J]. 地学前缘, 2023, 30(5): 420-429. |
[2] | 孙涛, 吴涛, 葛阳, 樊奇, 李丽霞, 吕鑫. 琼东南盆地深水区浅表层水合物稀有气体地球化学特征及意义[J]. 地学前缘, 2022, 29(5): 476-482. |
[3] | 陈欢庆, 朱筱敏, 张功成, 张亚雄, 张琴, 刘长利. 海相断陷盆地输导体系分类及组合模式特征: 以琼东南盆地古近系陵水组为例[J]. 地学前缘, 2021, 28(1): 282-294. |
[4] | 孙春岩,唐侥,赵浩,张仕强,王栋琳,贺会策,凌帆,李建华,贺岩. 广域电磁法在洞庭盆地北部生物气勘探中应用及远景靶区预测[J]. 地学前缘, 2018, 25(4): 210-225. |
[5] | 宫伟,李朝阳,姜效典. 青藏高原隆升与南海开启:南海西北部盆山耦合体系[J]. 地学前缘, 2017, 24(4): 268-283. |
[6] | 施小斌,于传海,陈梅,杨小秋,赵俊峰. 南海北部陆缘热流变化特征及其影响因素分析[J]. 地学前缘, 2017, 24(3): 56-64. |
[7] | 张人权, 梁杏, 靳孟贵. 末次盛冰期以来河北平原第四系地下水流系统的演变[J]. 地学前缘, 2013, 20(3): 217-226. |
[8] | 谢宗奎. 柴达木台南地区第四系细粒沉积岩相与沉积模式研究[J]. 地学前缘, 2009, 16(5): 245-250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||