地学前缘 ›› 2020, Vol. 27 ›› Issue (3): 68-77.DOI: 10.13745/j.esf.sf.2019.4.41
• “非传统稳定同位素:分析方法、示踪机理和主要应用”主题专辑 • 上一篇 下一篇
赵新苗1,2(), 唐索寒3,4, 李津3,4, 朱祥坤3,4, 王辉1,5, 李志汉1,5, 张宏福6
收稿日期:
2019-10-20
修回日期:
2020-01-25
出版日期:
2020-05-20
发布日期:
2020-05-20
作者简介:
赵新苗(1981—),女,博士,副研究员,主要从事非传统稳定同位素地球化学和地幔地球化学研究。E-mail: xinmiao312@mail.iggcas.ac.cn
基金资助:
ZHAO Xinmiao1,2(), TANG Suohan3,4, LI Jin3,4, ZHU Xiangkun3,4, WANG Hui1,5, LI Zhihan1,5, ZHANG Hongfu6
Received:
2019-10-20
Revised:
2020-01-25
Online:
2020-05-20
Published:
2020-05-20
摘要:
随着分析技术的进步,非传统稳定同位素体系在地球化学、天体化学和生物地球化学等研究领域的应用日益广泛。钛(Ti)是一个非常重要的过渡族金属元素,在地球和其他类地球行星中广泛存在。但是由于Ti是一种难熔的、流体不活动性元素,高温地质过程中Ti同位素分馏很小。人们对Ti同位素体系的地球化学应用的关注相对其他非传统稳定同位非常有限。而近年来,随着化学纯化方案的优化以及双稀释剂方法的改进和仪器质谱性能的提高,Ti同位素组成的高精度测试已经能够实现。天然样品中Ti同位素组成的变化随之得以发现,使得学者们能够利用这一新的稳定同位素体系来解决与高温和低温地球化学相关的问题。很快Ti同位素体系地球化学研究成为当前国际地质学界的前沿研究课题和新的发展方向之一。本文首先在简要介绍Ti元素和Ti同位素体地球化学性质的基础上,介绍了Ti元素化学分离和Ti同位素分析方法。随后笔者总结了已有的不同类型球粒陨石和地球样品的质量相关Ti同位素组成研究结果,对硅酸盐地球的Ti同位素组成做了初步评估。前人对高温地质样品的Ti同位素组成研究初步探明Ti同位素在岩浆演化过程,例如部分熔融和结晶分异等重要地质过程中的分馏行为。笔者在此基础上探讨了结晶分异过程中引起Ti同位素分馏的主要控制因素,指出Ti同位素是潜在的研究岩浆演化过程的新工具。最后笔者探讨了Ti同位素地球化学未来的发展方向,以加速我国在Ti同位素地球化学方面的应用研究。
中图分类号:
赵新苗, 唐索寒, 李津, 朱祥坤, 王辉, 李志汉, 张宏福. 钛同位素地球化学综述[J]. 地学前缘, 2020, 27(3): 68-77.
ZHAO Xinmiao, TANG Suohan, LI Jin, ZHU Xiangkun, WANG Hui, LI Zhihan, ZHANG Hongfu. A review of titanium isotope geochemistry[J]. Earth Science Frontiers, 2020, 27(3): 68-77.
图2 火山岩Ti同位素组成与其MgO(a)和SiO2(b)含量相关性投图 MORB数据引自[48,51],Ocean island basalts数据引自[48,52],Arc basalts数据引自[48],其他火山岩数据引自[48-49]。火山岩按照其主量分为含Fe-Ti氧化物和不含Fe-Ti氧化物。图中灰色阴影区和黑色虚线代表硅酸盐地球的Ti同位素组成,数据引自[48];橙色阴影区和虚线代表Greber等[50]报道的球粒陨石的Ti同位素平均值;棕色阴影区和虚线代表Deng等[34]报道的球粒陨石的Ti同位素平均值。
Fig.2 Plots of δ49/47TiOL-Ti vs. whole-rock MgO (a) and SiO2 (b) contents
图3 火山岩结晶分异导致的残余熔体Ti同位素变化的瑞利分馏模拟(a);分离结晶矿物与残余熔体瞬时同位素分馏系数(Δ49/47Timineral-melt,T=1 200 K)与火山岩SiO2含量投图(b);磁铁矿的TiO2含量与火山岩SiO2含量投图(c) 图3c中的小符号代表冰岛Hekla、南非Afar和印度尼西亚巴厘岛Agung火山岩中实测的磁铁矿氧化钛含量,数据来自[74-77];Mt代表磁铁矿。
Fig.3 (a) Correlation between δ49/47TiOL-Ti and -ln fTi. (b) Correlation between instant Δ49/47Timineral-melt (corrected to T=1200 K, using Δ49/47Timineral-melt=α/T2, where α is a constant) and SiO2 contents for the Hekla, Afar and Agung samples. (c) Predicted TiO2 content of magnetite by MELTS program vs. measured SiO2 content of whole rock for the Hekla, Afar and Agung samples.
[1] |
ZHU X K, O'NIONS R K, GUO Y L, et al. Secular variation of iron isotopes in North Atlantic Deep Water[J]. Science, 2000, 287(5460):2000-2002.
DOI URL |
[2] |
ZHU X K, GUO Y, WILLIAMS R J P, et al. Mass fractionation processes of transition metal isotopics[J]. Earth and Planetary Science Letters, 2002, 200(1/2):47-62.
DOI URL |
[3] |
ANBAR A, ROE J, BARLING J, et al. Nonbiological fractionation of iron isotopes[J]. Science, 2000, 288:126-128.
DOI URL |
[4] |
ANBAR A D, ROUXEL O. Metal stable isotopes in paleoceanography[J]. Annual Review of Earth and Planetary Sciences, 2007, 35:717-746.
DOI URL |
[5] | JOHNSON C M, BEARD B L, ALBARÈDE F, Geochemistry of non-traditional stable isotopes[J]. Reviews in Mineralogy and Geochemistry, 2004, 55:454. |
[6] | 张宏福, 汤艳杰, 赵新苗, 等. 非传统同位素体系在地幔地球化学研究中的重要性及其前景[J]. 地学前缘, 2007, 14(2):37-57. |
[7] | TANG Y J, ZHANG H F, YING J F. Review of the lithium isotope systems as a geochemical tracer[J]. International Geology Review, 2007, 49:274-388. |
[8] | 朱祥坤, 李志红, 赵新苗, 等. 铁同位素的MC-ICP-MS测定方法与地质标准物质的铁同位素组成[J]. 岩石矿物学杂志, 2008, 27(4):263-272. |
[9] | 朱祥坤, 王跃, 闫斌, 等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013, 32(6):651-688. |
[10] | 朱祥坤, 孙剑, 王跃. 岩浆过程中铁同位素的地球化学行为[J]. 地球科学与环境学报, 2016, 38(1):1-10. |
[11] | 赵新苗, 朱祥坤, 张宏福, 等. Fe同位素在地幔地球化学研究中的应用及进展[J]. 岩石矿物学杂志, 2008, 27(5):435-440. |
[12] | 柯栅, 刘盛遨, 李王晔, 等. 镁同位素地球化学研究新进展及其应用[J]. 岩石学报, 2011, 27(2):383-397. |
[13] | 黄方. 高温下非传统稳定同位素分馏[J]. 岩石学报, 2011, 27(2):365-382. |
[14] | 黄方, 吴非. 钒同位素地球化学综述[J]. 地学前缘, 2015, 22(5):94-101. |
[15] | 祝红丽, 张兆峰, 刘峪菲, 等. 钙同位素地球化学综述[J]. 地学前缘, 2015, 22(5):44-53. |
[16] | 何永胜, 胡东平, 朱传卫. 地球科学中铁同位素研究进展[J]. 地学前缘, 2015, 22(5):54-71. |
[17] | 王泽洲, 刘盛遨, 李丹丹, 等. 铜同位素地球化学及研究新进展[J]. 地学前缘, 2015, 22(5):72-83. |
[18] | 李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5):143-159. |
[19] | 曹辉辉, 赵新苗, 张宏福. Fe同位素体系及其在地幔地球化学中的应用[J]. 矿物岩石地球化学通报, 2016, 35(5):1053-1064. |
[20] | 牛耀龄, 龚红梅, 王晓红, 等. 用非传统稳定同位素探索全球大洋玄武岩、 深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32:111-127. |
[21] |
WANG Z Z, LIU S A, LIU J, et al. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle[J]. Geochimica et Cosmochimica Acta, 2017, 198:151-167.
DOI URL |
[22] |
TENG F Z, DAUPHAS N, WATKINS J M. Non-traditional stable isotopes: retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82:1-26.
DOI URL |
[23] |
DAUPHAS N, JOHN S G, ROUXEL O. Iron isotope systematics[J]. Reviews in Mineralogy and Geochemistry, 2017, 82:415-510.
DOI URL |
[24] |
MOYNIER F, VANCE D, FUJII T, et al. The isotope geochemistry of zinc and copper[J]. Reviews in Mineralogy and Geochemistry, 2017, 82:543-600.
DOI URL |
[25] |
QIN L, WANG X. Chromium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82:379-414.
DOI URL |
[26] |
HUANG J, CHEN S, ZHANG X C, et al. Effects of melt percolation on Zn isotope heterogeneity in the mantle: constraints from peridotite massifs in ivrea-verbano zone, Italian alps[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(4):2706-2722.
DOI URL |
[27] | 黄方, 田笙谕. 若干金属稳定同位素体系的研究进展: 以中国科大实验室为例[J]. 矿物岩石地球化学通报, 2018, 37(5):793-811. |
[28] | 戚玉菡, 吴非, 李春辉, 等. 地幔和大洋玄武岩的钒同位素研究[J]. 矿物岩石地球化学通报, 2019, 38:1-8. |
[29] | 汤艳杰, 张宏福. 华北克拉通岩石圈地幔的锂同位素特征与熔体改造作用[J]. 矿物岩石地球化学通报, 2019, 38:217-223. |
[30] |
ZHANG J, DAUPHAS N, DAVIS A M, et al. A new method for MC-ICPMS measurement of titanium isotopic composition: identification of correlated isotope anomalies in meteorites[J]. Journal of Analytical Atomic Spectrometry, 2011, 26:2197-2205.
DOI URL |
[31] |
ZHANG J, DAUPHAS N, DAVIS A M, et al. The proto-Earth as a significant source of lunar material[J]. Nature Geoscience, 2012, 5:251-255.
DOI URL |
[32] |
MILLET M A, DAUPHAS N. Ultra-precise titanium stable isotope measurements by double-spike high resolution MCICP- MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29:1444-1458.
DOI URL |
[33] | WILLIAMS N H. Titanium isotope cosmochemistry[D]. Manchester: University of Manchester, 2015. http://www.escholar.manchester.ac.uk/uk-ac-man-scw:259269. |
[34] |
DENG Z, MOYNIER F, VAN ZUILEN K, et al. Lack of resolvable titanium stable isotopic variations in bulk chondrites[J]. Geochimica et Cosmochimica Acta, 2018, 239:409-419.
DOI URL |
[35] | 唐索寒, 李津, 马健雄, 等. 地质样品中钛的化学分离及双稀释剂法钛同位素测定[J]. 分析化学, 2018, 46(10):1618-1627. |
[36] |
LODDERS K. Solar system abundances and condensation temperatures of the elements[J]. The Astrophysical Journal, 2003, 591:1220-1247.
DOI URL |
[37] |
SIMON S B, GROSSMAN L. A preferred method for the determination of bulk compositions of coarse-grained refractory inclusions and some implications of the results[J]. Geochimica et Cosmochimica Acta, 2004, 68:4237-4248.
DOI URL |
[38] |
ANDERS E, GREVESSE N. Abundances of the elements: meteoritic and solar[J]. Geochimica et Cosmochimica Acta, 1989, 53:197-214.
DOI URL |
[39] |
MCDONOUGH W F, SUN S S. The composition of the earth[J]. Chemical Geology, 1995, 120(3/4):223-253.
DOI URL |
[40] | RUDNICK R L, GAO S. Composition of the continental crust[M]//HOLLAND H D, TUREKIAN K K. The crust Vol 3: treatise on geochemistry. Oxford: Elsevier, 2003: 1-64. |
[41] |
BERGLUND M, WIESER M E. Isotopic compositions of the elements (2009 IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83:397-410.
DOI URL |
[42] |
LEYA I, SCHÖNBÄCHLER M, WIECHERT U, et al. High precision titanium isotope measurements on geological samples by high resolution MC-ICPMS[J]. International Journal of Mass Spectrometry, 2007, 262:247-255.
DOI URL |
[43] |
LEYA I, SCHÖNBÄCHLER M, WIECHERT U, et al. Titanium isotopes and the radial heterogeneity of the solar system[J]. Earth and Planetary Science Letters, 2008, 266(3):233-244.
DOI URL |
[44] |
TRINQUIER A, ELLIOTT T, ULFBECK D, et al. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk[J]. Science, 2009, 324:74-376.
DOI URL |
[45] |
ZHANG J, HUANG S, DAVIS A M, et al. Calcium and titanium isotopic fractionations during evaporation[J]. Geochimica et Cosmochimica Acta, 2014, 140:365-380.
DOI URL |
[46] |
WILLIAMS C D, JANNEY P E, HINES R R, et al. Precise titanium isotope compositions of refractory inclusions in the Allende CV3 chondrite by LA-MC-ICPMS[J]. Chemical Geology, 2016, 436:1-10.
DOI URL |
[47] |
SIMON J I, JORDAN M K, TAPPA M J, et al. Calcium and titanium isotope fractionation in refractory inclusions: tracers of condensation and inheritance in the early solar protoplanetary disk[J]. Earth and Planetary Science Letters, 2017, 472:277-288.
DOI URL |
[48] |
MILLET M A, DAUPHAS N, GREBER N D, et al. Titanium stable isotope investigation of magmatic processes on the Earth and Moon[J]. Earth and Planetary Science Letters, 2016, 449:197-205.
DOI URL |
[49] |
GREBER N D, DAUPHAS N, BEKKER A, et al. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago[J]. Science, 2017, 357:1271-1274.
DOI URL |
[50] |
GREBER N D, DAUPHAS N, PUCHTEL I S, et al. Titanium stable isotopic variations in chondrites, achondrites and lunar rocks[J]. Geochimica et Cosmochimica Acta, 2017, 213:534-552.
DOI URL |
[51] | DENG Z, MOYNIER F, SOSSI P A, et al. Bridging the depleted MORB mantle and the continental crust using titanium isotopes[J]. Geochemical Perspectives Letters, 2018, 1:53-64. |
[52] |
DENG Z, CHAUSSIDON M, SAVAGE P, et al. Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks[J]. Proceedings of the National Academy of Sciences, 2019, 116(4):1132-1135.
DOI URL |
[53] |
ZHU X K, MAKISHIMA A, GUO Y, et al. High precision measurement of titanium isotope ratios by plasma source mass spectrometry[J]. International Journal of Mass Spectrometry, 2002, 220:21-29.
DOI URL |
[54] | MAKISHIMA A, ZHU X K, BELSHAW N S, et al. Separation of titanium from silicates for isotopic ratio determination using multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2002, 1290-1294. |
[55] | 唐索寒, 朱祥坤, 赵新苗, 等. 离子交换分离和多接收等离子体质谱法高精度测定钛同位素的组成[J]. 分析化学, 2011, 39(12):1830-1835. |
[56] | 唐索寒, 李津, 王进辉, 等. 钛同位素标准溶液研制[J]. 岩矿测试, 2013, 32(3):377-382. |
[57] | 唐索寒, 李津, 闫斌. 玄武岩钛同位素分析标准物质研制[J]. 岩石矿物学杂志, 2014, 33(4):779-789. |
[58] | 王樵珊, 马金龙, 张乐, 等. 利用MC-ICPMS 高精度测定地质样品的Ti 同位素组成的方法研究[J]. 地球化学, 2018, 47(6):604-611. |
[59] | 何昕悦, 马金龙, 韦刚健. Ti同位素分析方法及应用研究进展[J]. 矿物岩石地球化学通报, 2018, 37(5):870-979. |
[60] |
NIEDERER F R, PAPANASTASSIOU D A, WASSERBURG G J. The isotopic composition of titanium in the Allende and Leoville meteorites[J]. Geochimica et Cosmochimica Acta, 1981, 45:1017-1031.
DOI URL |
[61] |
NIEDERER F R, PAPANASTASSIOU D A, WASSERBURG G J. Absolute isotopic abundances of Ti in meteorites[J]. Geochimica et Cosmochimica Acta, 1985, 49:835-851.
DOI URL |
[62] |
NIEMEYER S, LUGMAIR G W. Titanium isotopic anomalies in meteorites[J]. Geochimica et Cosmochimica Acta, 1984, 48:1401-1416.
DOI URL |
[63] |
IRELAND T R, COMPSTON W HEYDEGGER H R. Titanium isotopic anomalies in hibonites from the Murchison carbonaceous chondrite[J]. Geochimica et Cosmochimica Acta, 1985, 49:1989-1993.
DOI URL |
[64] |
HOPPE P, AMARI S, ZINNER E, et al. Carbon, nitrogen, magnesium, silicon and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite[J]. The Astrophysical Journal, 1994, 430:870-890.
DOI URL |
[65] |
SAHIJPAL S, GOSWAMI J N, DAVIS A M. K, Mg, Ti and Ca isotopic compositions and refractory trace element abundances in hibonites from CM and CV meteorites: implications for early solar system processes[J]. Geochimica et Cosmochimica Acta, 2000, 64:1989-2005.
DOI URL |
[66] |
LEYA I, SCHÖNBÄCHLER M, KRÄHENBÜHL, et al. New titanium isotope data for Allende and Efremovka CAIs[J]. The Astrophysical Journal, 2009, 702:1118-1126.
DOI URL |
[67] |
KÖÖP L, DAVIS A M, NAKASHIMA D, et al. A link between oxygen, calcium and titanium isotopes in26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula[J]. Geochimica et Cosmochimica Acta, 2016, 189:70-95.
DOI URL |
[68] |
KÖÖP L, NAKASHIMA D, HECK P R, et al. New constraints on the relationship between26Al and oxygen, calcium, and titanium isotopic variation in the early Solar System from a multielement isotopic study of spinel-bonite inclusions[J]. Geochimica et Cosmochimica Acta, 2016, 184:151-172.
DOI URL |
[69] |
DAVIS A M, ZHANG J, GREBER N D, et al. Titanium isotopes and rare earth patterns in CAIs: evidence for thermal processing and gas-dust decoupling in the protoplanetary disk[J]. Geochimica et Cosmochimica Acta, 2018, 221:275-295.
DOI URL |
[70] |
FARGES F, BROWN G E JR, NAVROTSK Y A, et al. Coordination chemistry of Ti(IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide compounds[J]. Geochimica et Cosmochimica Acta, 1996, 60:3023-3038.
DOI URL |
[71] |
FARGES F, BROWN G E Jr, REHR J J. Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure[J]. Geochimica et Cosmochimica Acta, 1996, 60:3039-3053.
DOI URL |
[72] |
BIGELEISEN J, MAYER M G. Calculation of equilibrium constants for isotopic exchange reactions[J]. The Journal of Chemical Physics, 1947, 15(5):261-267.
DOI URL |
[73] | UREY H C. The thermodynamic properties of isotopic substance[J]. Journal of the Chemical Society, 1947, 8:562-581. |
[74] |
BALDRIDGE W S, MCGETCHIN T R, FREY F A. et al. Magmatic evolution of Hekla, Iceland[J]. Contributions to Mineralogy and Petrology, 1973, 42:245-258.
DOI URL |
[75] | DEMPSEY S R. Geochemistry of the volcanic rocks form the Sunda arc[D]. Durham: Durham University, 2012. |
[76] |
GREANEY A T, RUDNICK R L, HELZ R T, et al. The behavior of chalcophile elements during magmatic differentiation as observed in Kilauea Iki lava lake, Hawaii[J]. Geochimica et Cosmochimica Acta, 2017, 210:71-96.
DOI URL |
[77] |
FIELD L, BLUNDY J, CALVERT A, et al. Magmatic history of Dabbahu: a composite volcano in the Afar Rift, Ethiopia[J]. Geological Society of America Bulletin, 2013, 125:128-147.
DOI URL |
[78] | SMYTH J R, BISH L. Crystal structure and cation sites of the rock forming minerals[M]. Boston: Allen & Unwin, 1988. |
[79] |
MACRIS C A, MANNING C E, YOUNG E D. Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths[J]. Geochimica et Cosmochimica Acta, 2015, 154:168-185.
DOI URL |
[1] | Yuanming Pan, Ning Chen, Jianfeng Zhu, Neelege Hopps, Eli Wiens, Jinru Lin. 富氯造岩矿物中溴的分子结构[J]. 地学前缘, 2020, 27(5): 10-13. |
[2] | 侯晓阳,苏尚国,杨跃跃. 河北武安玉石洼铁矿中磁铁矿特征及其对铁矿床成因指示意义 [J]. 地学前缘, 2019, 26(6): 244-256. |
[3] | 毛韦达,胡翔. La0.5 Sr0.5 Co0.8 Mn0.2 O3-δ 钙钛矿对过一硫酸盐降解水中四溴双酚A影响实验研究[J]. 地学前缘, 2019, 26(3): 255-262. |
[4] | 石煜,王玉往,王京彬. 东天山似斑状角闪辉长岩类与铁钛氧化物矿床的关系[J]. 地学前缘, 2017, 24(6): 80-97. |
[5] | 冯新斌, 尹润生, 俞奔, 杜布云, 陈玖斌. 汞同位素地球化学概述[J]. 地学前缘, 2015, 22(5): 124-135. |
[6] | 王中伟, 袁玮, 陈玖斌. 锌稳定同位素地球化学综述[J]. 地学前缘, 2015, 22(5): 84-93. |
[7] | 丁浩, 刘玉芹, 周红. 中国钛白粉生产环境效应及可持续发展[J]. 地学前缘, 2014, 21(5): 294-301. |
[8] | 刘玉芹, 丁浩, 谢迪. 中国钛资源与海绵钛加工环境效应[J]. 地学前缘, 2014, 21(5): 281-293. |
[9] | 赵太平, 陈伟, 卢冰. 斜长岩体中Fe-Ti-P矿床的特征与成因[J]. 地学前缘, 2010, 17(2): 106-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||