地学前缘 ›› 2020, Vol. 27 ›› Issue (5): 10-13.DOI: 10.13745/j.esf.sf.2020.5.54
所属专题: Research Articles (English)
• 成因矿物学研究基础:矿物识别及定量化表征 • 上一篇 下一篇
Yuanming Pan1(), Ning Chen1,2, Jianfeng Zhu3, Neelege Hopps1, Eli Wiens1, Jinru Lin1,4
收稿日期:
2020-03-21
修回日期:
2020-05-19
出版日期:
2020-09-25
发布日期:
2020-09-25
作者简介:
E-mail address: yuanming.pan@usask.ca
基金资助:
Yuanming Pan1(), Ning Chen1,2, Jianfeng Zhu3, Neelege Hopps1, Eli Wiens1, Jinru Lin1,4
Received:
2020-03-21
Revised:
2020-05-19
Online:
2020-09-25
Published:
2020-09-25
摘要:
卤族元素诸如氯和溴作为地球化学示踪剂,常用于指示岩浆、变质岩和热液的来源和演化过程。而认清溴在造岩矿物中的形态和结构有助于丰富和完善其在地质环境演变中的示踪作用。但是,溴在造岩矿物中的含量极低导致大多数结构分析方法都无法使用,因此造岩矿物中微量溴的结构研究极具挑战性。本文采用 81Br魔角旋转核磁共振(MAS NMR)光谱和同步辐射吸收光谱(XAS)技术,首次对富氯造岩矿物中的微量溴进行了结构分析。结果表明溴离子在方硼石中的微区结构不同于该矿物中三配位Cl原子的结构环境,而与Mg3B7O13Br中八面体配位的溴离子相似,表明即使在微量条件下也存在域偏析。而对其他富氯造岩矿物的Br K边X光吸收近边结构(XANES)光谱白线峰的位置和扩展X射线吸收精细结构(EXAFS)分析表明微量溴离子替代了这些矿物中氯的位置,导致局部结构扭曲膨胀。溴离子在造岩矿物中的这一微观结构研究结果可为探索氯和溴在地质演变过程的指示作用提供新的科学依据。
中图分类号:
Yuanming Pan, Ning Chen, Jianfeng Zhu, Neelege Hopps, Eli Wiens, Jinru Lin. 富氯造岩矿物中溴的分子结构[J]. 地学前缘, 2020, 27(5): 10-13.
Yuanming Pan, Ning Chen, Jianfeng Zhu, Neelege Hopps, Eli Wiens, Jinru Lin. Local structural environments of bromine in chlorine-rich minerals: Insights from Br K-edge XAS and 81Br MAS NMR spectroscopy[J]. Earth Science Frontiers, 2020, 27(5): 10-13.
No | Name/Formula | Source | Br (ppm) | References |
---|---|---|---|---|
1 | NaBr | chemical (Alfar Aesar) | ||
2 | Mg3B7O13Br | synthetic | 1 | |
3 | boracite | Boron, California, USA | NA | 1 |
4 | marialite | Mpwapwa, Tanzania | 1877±12 | 2,3 |
5 | sodalite | South Africa | 234±3 | 2,3 |
6 | chlorapatite | Bob’s Lake, Ontario, Canada | 75 | 2 |
7 | chlorapatite | Dashkesan deposit, Azerbaijan | <0.5 | 4 |
8 | potassic-chloro-hastingsite | Dashkesan deposit, Azerbaijan | <0.5 | 4 |
9 | Cl-rich hornblende | Lofoton, Nordland, Norway | NA | 5 |
Table 1 Summary of samples investigated in this study.
No | Name/Formula | Source | Br (ppm) | References |
---|---|---|---|---|
1 | NaBr | chemical (Alfar Aesar) | ||
2 | Mg3B7O13Br | synthetic | 1 | |
3 | boracite | Boron, California, USA | NA | 1 |
4 | marialite | Mpwapwa, Tanzania | 1877±12 | 2,3 |
5 | sodalite | South Africa | 234±3 | 2,3 |
6 | chlorapatite | Bob’s Lake, Ontario, Canada | 75 | 2 |
7 | chlorapatite | Dashkesan deposit, Azerbaijan | <0.5 | 4 |
8 | potassic-chloro-hastingsite | Dashkesan deposit, Azerbaijan | <0.5 | 4 |
9 | Cl-rich hornblende | Lofoton, Nordland, Norway | NA | 5 |
Fig.1 81Br MAS NMR spectrum of synthetic Mg3B7O13Br showing a single resonance signal with the central transition at approximately ~11.8 ppm and negligible nuclear quadrupolar contribution, and the spinning side bands as weak satellite peaks.
No | Model | Fitted Parameters | ||||
---|---|---|---|---|---|---|
Path | CN | R (Å) | CN | R (Å) | DW | |
1 | Br-Na | 6 | 2.986 | 6.0±0.5 | 2.90±0.02 | 0.0012±0.0010 |
2 | Br-Br | 12 | 4.224 | 9.5±0.5 | 4.16±0.02 | 0.0100* |
3 | Br-Na | 8 | 5.174 | 8.0±0.5 | 5.09±0.02 | 0.0020±0.0010 |
χ2=51750, residual=20.2, F-Test: 0.99998; Exp.Error: 0.00023, χ2 w/o err: 0.0566, reduced χ2: 1647, R range: 1.8-5.1 Å |
Table 2 Fittings of Br K-edge EXAFS data of the model compound NaBr.
No | Model | Fitted Parameters | ||||
---|---|---|---|---|---|---|
Path | CN | R (Å) | CN | R (Å) | DW | |
1 | Br-Na | 6 | 2.986 | 6.0±0.5 | 2.90±0.02 | 0.0012±0.0010 |
2 | Br-Br | 12 | 4.224 | 9.5±0.5 | 4.16±0.02 | 0.0100* |
3 | Br-Na | 8 | 5.174 | 8.0±0.5 | 5.09±0.02 | 0.0020±0.0010 |
χ2=51750, residual=20.2, F-Test: 0.99998; Exp.Error: 0.00023, χ2 w/o err: 0.0566, reduced χ2: 1647, R range: 1.8-5.1 Å |
No | Model | Fitted Parameters | |||||
---|---|---|---|---|---|---|---|
Path | CN | R (Å) | Path | CN | R (Å) | DW | |
1 | Cl-Na | 4 | 2.738 | Br-Na | 4.0±0.5 | 2.84±0.02 | 0.0100* |
2 | Cl-O | 12 | 4.306 | Br-O | 12.0±0.5 | 4.26±0.02 | 0.0100* |
3 | Cl-O | 12 | 4.496 | Br-O | 12.0±0.5 | 4.45±0.02 | 0.0077±0.0010 |
4 | Cl-Na | 4 | 4.958 | Br-Na | 4.0±0.5 | 4.89±0.02 | 0.0050±0.0010 |
5 | Cl-Al | 12 | 4.968 | Br-Al | 12.0±0.5 | 4.90±0.02 | 0.0060±0.0010 |
6 | Cl-Si | 12 | 4.968 | Br-Si | 12.0±0.5 | 5.02±0.02 | 0.0062±0.0010 |
residual=27.6, F-Test: 0.99827; Exp.Error: 0.00051, reduced χ2: 36, χ2 w/o err: 0.0022, R range: 1.9-5.1 Å |
Table 3 Fittings of Br K-edge EXAFS data of sodalite.
No | Model | Fitted Parameters | |||||
---|---|---|---|---|---|---|---|
Path | CN | R (Å) | Path | CN | R (Å) | DW | |
1 | Cl-Na | 4 | 2.738 | Br-Na | 4.0±0.5 | 2.84±0.02 | 0.0100* |
2 | Cl-O | 12 | 4.306 | Br-O | 12.0±0.5 | 4.26±0.02 | 0.0100* |
3 | Cl-O | 12 | 4.496 | Br-O | 12.0±0.5 | 4.45±0.02 | 0.0077±0.0010 |
4 | Cl-Na | 4 | 4.958 | Br-Na | 4.0±0.5 | 4.89±0.02 | 0.0050±0.0010 |
5 | Cl-Al | 12 | 4.968 | Br-Al | 12.0±0.5 | 4.90±0.02 | 0.0060±0.0010 |
6 | Cl-Si | 12 | 4.968 | Br-Si | 12.0±0.5 | 5.02±0.02 | 0.0062±0.0010 |
residual=27.6, F-Test: 0.99827; Exp.Error: 0.00051, reduced χ2: 36, χ2 w/o err: 0.0022, R range: 1.9-5.1 Å |
No | Model | Fitted Parameters | |||||
---|---|---|---|---|---|---|---|
Path | CN | R (Å) | Path | CN | R (Å) | DW | |
1 | Cl-Na | 4 | 2.848 | Br-Na | 1.8±0.5 | 2.98±0.02 | 0.0100* |
2 | Cl-O | 4 | 3.982 | Br-O | 4.0±0.5 | 3.65±0.02 | 0.0050±0.0010 |
3 | Cl-O | 8 | 4.010 | Br-O | 8.0±0.5 | 3.85±0.02 | 0.0066±0.0010 |
4 | Cl-O | 8 | 4.203 | Br-O | 8.0±0.5 | 4.43±0.02 | 0.0095±0.0010 |
5 | Cl-Si | 8 | 4.377 | Br-Si | 8.0±0.5 | 4.32±0.02 | 0.0100* |
6 | Cl-Al | 8 | 4.484 | Br-Al | 8.0±0.5 | 4.54±0.02 | 0.0050±0.0010 |
7 | Cl-O | 8 | 4.601 | Br-O | 8.0±0.5 | 4.56±0.02 | 0.0050±0.0010 |
residual=29.7, F-Test: 0.38535; Exp.Error: 0.00017, reduced χ2: 33.1, χ2 w/o err: 0.00026, R range: 1.7-5.6 Å |
Table 4 Fittings of Br K-edge EXAFS data of marialite.
No | Model | Fitted Parameters | |||||
---|---|---|---|---|---|---|---|
Path | CN | R (Å) | Path | CN | R (Å) | DW | |
1 | Cl-Na | 4 | 2.848 | Br-Na | 1.8±0.5 | 2.98±0.02 | 0.0100* |
2 | Cl-O | 4 | 3.982 | Br-O | 4.0±0.5 | 3.65±0.02 | 0.0050±0.0010 |
3 | Cl-O | 8 | 4.010 | Br-O | 8.0±0.5 | 3.85±0.02 | 0.0066±0.0010 |
4 | Cl-O | 8 | 4.203 | Br-O | 8.0±0.5 | 4.43±0.02 | 0.0095±0.0010 |
5 | Cl-Si | 8 | 4.377 | Br-Si | 8.0±0.5 | 4.32±0.02 | 0.0100* |
6 | Cl-Al | 8 | 4.484 | Br-Al | 8.0±0.5 | 4.54±0.02 | 0.0050±0.0010 |
7 | Cl-O | 8 | 4.601 | Br-O | 8.0±0.5 | 4.56±0.02 | 0.0050±0.0010 |
residual=29.7, F-Test: 0.38535; Exp.Error: 0.00017, reduced χ2: 33.1, χ2 w/o err: 0.00026, R range: 1.7-5.6 Å |
No | Model | Fitted Parameters | |||||
---|---|---|---|---|---|---|---|
Path | CN | R (Å) | Path | CN | R (Å) | DW | |
1 | Cl-Fe | 1 | 2.42 | Br-Fe | 0.9±0.5 | 2.56±0.02 | 0.0065* |
2 | Cl-Fe | 2 | 2.49 | Br-Fe | 1.8±0.5 | 2.74±0.02 | 0.0100* |
3 | Cl-K | 1 | 3.28 | Br-K | 1.2±0.5 | 3.07±0.02 | 0.0038±0.0010 |
4 | Cl-O | 10 | 3.15 | Br-O | 9.8±0.5 | 3.29±0.02 | 0.0050±0.0010 |
5 | Cl-Al | 4 | 3.30 | Br-Al | 4.2±0.5 | 3.35±0.02 | 0.0068±0.0010 |
6 | Cl-Si | 2 | 3.40 | Br-Si | 2.2±0.5 | 3.36±0.02 | 0.0059±0.0010 |
residual=19.3, F-Test: 0.9923; Exp.Error: 0.00026, reduced χ2: 70, χ2 w/o err: 0.0014, R range: 1.6-4.2 Å |
Table 5 Fittings of Br K-edge EXAFS data of Cl-rich hornblende.
No | Model | Fitted Parameters | |||||
---|---|---|---|---|---|---|---|
Path | CN | R (Å) | Path | CN | R (Å) | DW | |
1 | Cl-Fe | 1 | 2.42 | Br-Fe | 0.9±0.5 | 2.56±0.02 | 0.0065* |
2 | Cl-Fe | 2 | 2.49 | Br-Fe | 1.8±0.5 | 2.74±0.02 | 0.0100* |
3 | Cl-K | 1 | 3.28 | Br-K | 1.2±0.5 | 3.07±0.02 | 0.0038±0.0010 |
4 | Cl-O | 10 | 3.15 | Br-O | 9.8±0.5 | 3.29±0.02 | 0.0050±0.0010 |
5 | Cl-Al | 4 | 3.30 | Br-Al | 4.2±0.5 | 3.35±0.02 | 0.0068±0.0010 |
6 | Cl-Si | 2 | 3.40 | Br-Si | 2.2±0.5 | 3.36±0.02 | 0.0059±0.0010 |
residual=19.3, F-Test: 0.9923; Exp.Error: 0.00026, reduced χ2: 70, χ2 w/o err: 0.0014, R range: 1.6-4.2 Å |
No. | Model | Mg3B7O13Br | Boracite | ||||||
---|---|---|---|---|---|---|---|---|---|
Path | CN | R(Å) | CN | R(Å) | DW | CN | R(Å) | DW | |
1 | Br-Mg | 6 | 3.01 | 5.6±0.5 | 3.03±0.02 | 0.0100* | 5.5±0.5 | 3.06±0.02 | 0.0100* |
2 | Br-O | 12 | 3.44 | 11.6±0.5 | 3.32±0.02 | 0.0030±0.0010 | 11.5±0.5 | 3.35±0.02 | 0.0052±0.0010 |
3 | Br-B | 4 | 3.50 | 4.4±0.5 | 3.63±0.02 | 0.0024±0.0010 | 4.4±0.5 | 3.58±0.02 | 0.0024±0.0010 |
4 | Br-O | 12 | 3.80 | 11.5±0.5 | 3.82±0.02 | 0.0019±0.0010 | 12.4±0.5 | 3.82±0.02 | 0.0096±0.0010 |
5 | Br-B | 12 | 4.26 | 11.5±0.5 | 4.22±0.02 | 0.0100* | 11.5±0.5 | 4.25±0.02 | 0.0100* |
χ2: 150558.95 Residual: 10.1 F-Test: 0.00 Exp.Error: 0.000096 χ2 w/o err: 0.0042 reduced χ2: 479 R range: 2.1-4.2 Å | χ2: 640440.89 Residual: 15.2 F-Test: 0.84 Exp.Error: 0.0000599 χ2 w/o err: 0.0043 reduced χ2: 2059 R range: 2.2-4.3 Å |
Table 6 Fittings of Br K-edge EXAFS data of Mg3B7O13Br and boracite.
No. | Model | Mg3B7O13Br | Boracite | ||||||
---|---|---|---|---|---|---|---|---|---|
Path | CN | R(Å) | CN | R(Å) | DW | CN | R(Å) | DW | |
1 | Br-Mg | 6 | 3.01 | 5.6±0.5 | 3.03±0.02 | 0.0100* | 5.5±0.5 | 3.06±0.02 | 0.0100* |
2 | Br-O | 12 | 3.44 | 11.6±0.5 | 3.32±0.02 | 0.0030±0.0010 | 11.5±0.5 | 3.35±0.02 | 0.0052±0.0010 |
3 | Br-B | 4 | 3.50 | 4.4±0.5 | 3.63±0.02 | 0.0024±0.0010 | 4.4±0.5 | 3.58±0.02 | 0.0024±0.0010 |
4 | Br-O | 12 | 3.80 | 11.5±0.5 | 3.82±0.02 | 0.0019±0.0010 | 12.4±0.5 | 3.82±0.02 | 0.0096±0.0010 |
5 | Br-B | 12 | 4.26 | 11.5±0.5 | 4.22±0.02 | 0.0100* | 11.5±0.5 | 4.25±0.02 | 0.0100* |
χ2: 150558.95 Residual: 10.1 F-Test: 0.00 Exp.Error: 0.000096 χ2 w/o err: 0.0042 reduced χ2: 479 R range: 2.1-4.2 Å | χ2: 640440.89 Residual: 15.2 F-Test: 0.84 Exp.Error: 0.0000599 χ2 w/o err: 0.0043 reduced χ2: 2059 R range: 2.2-4.3 Å |
[1] | BÉNARD A, KOGA K T, SHIMIZU N, et al., 2017. Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka Russia): implications for melt generation and volatile recycling processes in subduction zones[J]. Geochimica et Cosmochimica Acta, 199:324-350. |
[2] |
BERNAL N F, GLEESON S A, SMITH M P, et al., 2017. Evidence of multiple halogen sources in scapolites from iron oxide-copper-gold (IOCG) deposits and regional NaCl metasomatic alteration Norrbotten County Sweden[J]. Chemical Geology, 451:90-103.
DOI URL |
[3] |
BRENAN J, 1993. Kinetics of fluorine chlorine and hydroxyl exchange in fluorapatite[J]. Chemical Geology, 110(1):195-210.
DOI URL |
[4] | CADOUX A, IACONO-MARZIANO G, PAONITA A, et al., 2017. A new set of standards for in-situ measurement of bromine abundances in natural silicate glasses: application to SR-XRF LA-ICP-MS and SIMS techniques[J]. Chemical Geology, 452:60-70. |
[5] | CAMERON M, GIBBS G V, 1973. The crystal structure and bonding of fluor-tremolite: a comparison with hydroxyl tremolite[J]. American Mineralogist, 58:879-888. |
[6] |
CHAN A, JENKINS D M, DYAR M D, 2016. Partitioning of chlorine between nacl brines and ferro-pargasite: implications for the formation of chlorine-rich amphiboles in mafic rocks[J]. The Canadian Mineralogist, 54(1):337-351.
DOI URL |
[7] |
COCHAIN B, SANLOUP C, DE GROUCHY C, et al., 2015. Bromine speciation in hydrous silicate melts at high pressure[J]. Chemical Geology, 404:18-26.
DOI URL |
[8] | DONG P, 2005. Halogen-element (F, Cl and Br) behavior in apatites scapolite and sodalite: an experimental investigation with field applications[D]. Saskatchewan, Canada: University of Saskatchewan. |
[9] |
DESHPANDE V T, 1961. Thermal expansion of sodium fluoride and sodium bromide[J]. Acta Crystallographica, 14:794.
DOI URL |
[10] |
DOWTY E, CLARK J R, 1973. Crystal-structure refinements for orthorhombic boracite Mg3ClB7O13 and a trigonal iron-rich analogue[J]. Zeitschrift für Kristallographie, 138:64-99.
DOI URL |
[11] |
EVANS B W, SHAW D M, HAUGHTON D R, 1969. Scapolite stoichiometry[J]. Contributions to Mineralogy and Petrology, 24(4):293-305.
DOI URL |
[12] | FABBRIZIO A, STALDER R, HAMETNER K, et al., 2013. Experimental partitioning of halogens and other trace elements between olivine pyroxenes amphibole and aqueous fluid at 2 GPa and 900-1300 ℃[J]. Contributions to Mineralogy and Petrology, 166(2):639-653. |
[13] | FLEET M E, LIU X, PAN Y, 2000. Rare-earth elements in chlorapatite [Ca10(PO4)6Cl2]: uptake site preference and degradation of monoclinic structure[J]. American Mineralogist, 85(10):1437-1446. |
[14] | FLEET M E, 1989. Structures of sodium alumino-germanate sodalites [Na8(Al6Ge6O24)A2 A=Cl Br I][J]. Acta Crystallographica, C45:843-847. |
[15] | FREUND J, INGALLS R, CROZIER E D, 1991. Extended X-ray-absorption fine-structure study of alkali-metal halides under high pressure[J]. Physical Review B, 43(12):9894-9905. |
[16] | GUTMANN A, BOBROWSKI N, ROBERTS T J, et al., 2018. Advances in bromine speciation in volcanic plumes[J]. Frontiers in Earth Science, 6:213. |
[17] |
HAMMERLI J, RUSK B, SPANDLER C, et al., 2013. In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources[J]. Chemical Geology, 337/338:75-87.
DOI URL |
[18] |
HAMMERLI J, SPANDLER C, OLIVER N H S, et al., 2014. Cl/Br of scapolite as a fluid tracer in the Earth’s crust: insights into fluid sources in the Mary Kathleen Fold Belt Mt. Isa Inlier Australia[J]. Journal of Metamorphic Geology, 32(1):93-112.
DOI URL |
[19] |
HASSAN I, ANTAO S M, PARISE J B, 2004. Sodalite: high-temperature structures obtained from synchrotron radiation and Rietveld refinements[J]. American Mineralogist, 89(2/3):359-364.
DOI URL |
[20] |
HAWTHORNE F C, OBERTI R, HARLOW G E, et al., 2012. Nomenclature of the amphibole supergroup[J]. American Mineralogist, 97(11/12):2031-2048.
DOI URL |
[21] | HUGHES J M, CAMERON M, CROWLEY K D, 1989. Structural variations in natural F, OH and Cl apatites[J]. American Mineralogist, 74(7/8):870-876. |
[22] | JIANG D T, 2002. X-ray absorption fine structure spectroscopy[C]// HENDERSON G, BAKER D. Synchrotron radiation: Earth environmental and material sciences applications (30). St. John’s Newfoundland, Canada: Mineralogical Society of Canada: 65-98. |
[23] | KENDRICK M A, 2012. High precision Cl, Br and I determinations in mineral standards using the noble gas method[J]. Chemical Geology, 292/293:116-126. |
[24] | KÖHLER J, SCHÖNENBERGER J, UPTON B, et al., 2009. Halogen and trace-element chemistry in the Gardar Province South Greenland: subduction-related mantle metasomatism and fluid exsolution from alkalic melts[J]. Lithos, 113(3):731-747. |
[25] | KULLERUD K, ERAMBERT M, 1999. Cl-scapolite, Cl-amphibole and plagioclase equilibria in ductile shear zones at Nusfjord Lofoten Norway: implications for fluid compositional evolution during fluid-mineral interaction in the deep crust[J]. Geochimica et Cosmochimica Acta, 63(22):3829-3844. |
[26] |
KUSEBAUCH C, JOHN T, WHITEHOUSE M J, et al., 2015. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes[J]. Geochimica et Cosmochimica Acta, 170:225-246.
DOI URL |
[27] |
LERI A C, MYNENI S C B, 2012. Natural organobromine in terrestrial ecosystems[J]. Geochimica et Cosmochimica Acta, 77:1-10.
DOI URL |
[28] |
LERI A C, RAVEL B, 2014. Sample thickness and quantitative concentration measurements in Br K-edge XANES spectroscopy of organic materials[J]. Journal of Synchrotron Radiation, 21(3):623-626.
DOI URL |
[29] |
LOUVEL M, CADOUX A, BROOKER R A, et al., 2020. New insights on Br speciation in volcanic glasses and structural controls on halogen degassing[J]. American Mineralogist, 105(6):795-802.
DOI URL |
[30] |
LUO Y, HUGHES J M, RAKOVAN J, et al., 2009. Site preference of U and Th in Cl, F and Sr apatites[J]. American Mineralogist, 94(2/3):345-351.
DOI URL |
[31] | LYTLE F W, SAYERS D E, STERN E A, 1989. Report of the international workshop on standards and criteria in X-ray absorption spectroscopy[J]. Physica B: Condensed Matter, 158(1):701-722. |
[32] |
MAKINO K, TOMITA K, SUWA K, 1993. Effect of chlorine on the crystal structure of a chlorine-rich hastingsite[J]. Mineralogical Magazine, 57:677-685.
DOI URL |
[33] |
MARKS M A W, WENZEL T, WHITEHOUSE M J, et al., 2012. The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: an integrated analytical approach[J]. Chemical Geology, 291:241-255.
DOI URL |
[34] | MI J X, PAN Y, 2018. Halogen-rich minerals: crystal chemistry and geological significances[M]// HARLOV D E, ARANOVICH L. The role of halogens in terrestrial and extraterrestrial processes. Cham: Springer:123-181. |
[35] | OBERTI R, UNGARETTI L, CANNILLO E, et al., 1993. The mechanism of Cl incorporation in amphibole[J]. American Mineralogist, 78:746-752. |
[36] |
PAN Y, DONG P, 2003. Bromine in scapolite and sodalite: X-ray microprobe analysis exchange experiments and application to skarn deposits[J]. The Canadian Mineralogist, 41(2):529-540.
DOI URL |
[37] | PAN Y, FLEET M E, 1990. Halogen-bearing allanite from the White River gold occurrences, Hemlo area, Ontario[J]. The Canadian Mineralogist, 28:67-75. |
[38] |
PAN Y, FLEET M E, 1996. Rare earth element mobility during prograde granulite facies metamorphism: significance of fluorine[J]. Contributions to Mineralogy and Petrology, 123(3):251-262.
DOI URL |
[39] | PAN Y, FLEET M E, RAY G E, 1994. Scapolite in two Canadian gold deposits: Nickel Plate, British Columbia and Hemlo, Ontario[J]. The Canadian Mineralogist, 32(4):825-837. |
[40] | PEKOV I V, 2005. Chloro-potassic-hastingsite(KNa)Ca2(Fe2+Mg)4Fe3+(Si6Al2)O22(ClOH)2: revalidation and the new name dashkeshanite[J]. Zap Ross Mineral Obshch, 134:31-35. |
[41] | RAVEL B, 2001. ATOMS: crystallography for the X-ray absorption spectroscopist[J]. Journal of Synchrotron Radiation, 8(2):314-316. |
[42] |
RAVEL B, NEWVILLE M, 2005. ATHENA ARTEMIS HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT[J]. Journal of Synchrotron Radiation, 12:537-541.
DOI URL |
[43] | REHR J J, ALBERS R C, 2000. Theoretical approaches to X-ray absorption fine structure[J]. Reviews of Modern Physics, 72(3):621-654. |
[44] | RESSLER T, 1997. WinXAS: a new software package not only for the analysis of energy-dispersive XAS data[J]. Journal de Physique IV, 7(C2):269-270. |
[45] | RESSLER T. WinXAS 3.x manual[R/OL]. http://www.winxas.de/. |
[46] |
SIEMANN M G, SCHRAMM M, 2002. Henry’s and non-Henry’s law behavior of Br in simple marine systems[J]. Geochimica et Cosmochimica Acta, 66(8):1387-1399.
DOI URL |
[47] | SOKOLOVA E V, KABALOV Y K, SHERRIFF B L, et al., 1996. Marialite: Rietveld structure-refinement and 29Si MAS and 27Al satellite transition NMR spectroscopy[J]. The Canadian Mineralogist, 34(5):1039-1050. |
[48] |
SOLDATOV A, IVANCHENKO T, STEKHIN I, et al., 1993. X-ray absorption fine-structure investigation of the ionic compounds NaBr KBr and RbCl: full multiple-scattering analysis[J]. Journal of Physics: Condensed Matter, 5(40):7521-7528.
DOI URL |
[49] | SUENO S, CLARK J R, PAPIKE J J, et al., 1973. Crystal structure refinement of cubic boracite[J]. American Mineralogist, 58:691-697. |
[50] | TEERTSTRA D K, SHERRIFF B L, 1997. Substitutional mechanisms compositional trends and the end-member formulae of scapolite[J]. Chemical Geology, 136(3):233-260. |
[51] |
TRILL H, ECKERT H, 2003. Mixed halide sodalite solid solution systems. Hydrothermal synjournal and structural characterization by solid state NMR[J]. Journal of Physical Chemistry B, 107:8779-8788.
DOI URL |
[52] |
WALKER D, VERMA P K, CRANSWICK L M D, et al., 2004. Halite-sylvite thermoelasticity[J]. American Mineralogist, 89(1):204-210.
DOI URL |
[53] | WEBSTER J D, BAKER D R, AIUPPA A, 2018. Halogens in mafic and intermediate-silica content magmas[M]// HARLOV D E, ARANOVICH L. The role of halogens in terrestrial and extraterrestrial geochemical processes. Cham: Springer:307-430. |
[54] |
WEBSTER J D, GOLDOFF B A, FLESCH R N, et al., 2017. Hydroxyl Cl and F partitioning between high-silica rhyolitic melts-apatite-fluid(s) at 50-200 MPa and 700-1000 ℃[J]. American Mineralogist, 102(1):61-74.
DOI URL |
[55] | ZHANG C, LIN J, PAN Y, et al., 2017. Electron probe microanalysis of bromine in minerals and glasses with correction for spectral interference from aluminium and comparison with microbeam synchrotron X-ray fluorescence spectrometry[J]. Geostandards and Geoanalytical Research, 41(3):449-457. |
[56] |
ZHOU B, FAUCHER A, LASKOWSKI R, et al., 2017. Ultrahigh-field 25Mg NMR and DFT study of magnesium borate minerals[J]. ACS Earth and Space Chemistry, 1(6):299-309.
DOI URL |
[57] |
ZHOU B, SUN W, ZHAO B C, et al., 2016. 11B MAS NMR and first-principles study of the [OBO3] pyramids in borates[J]. Inorganic Chemistry, 55(5):1970-1977.
DOI URL |
[1] | 梁培, 陈华勇, 赵联党, Kendrick MARK, 江宏君, 张维峰, 吴超, 谢玉玲. 新疆北部弧-盆转化体系下铁氧化物-铜-金矿床的流体演化特征:来自卤族元素和稀有气体同位素的证据[J]. 地学前缘, 2020, 27(3): 239-253. |
[2] | 赵新苗, 唐索寒, 李津, 朱祥坤, 王辉, 李志汉, 张宏福. 钛同位素地球化学综述[J]. 地学前缘, 2020, 27(3): 68-77. |
[3] | 毛韦达,胡翔. La0.5 Sr0.5 Co0.8 Mn0.2 O3-δ 钙钛矿对过一硫酸盐降解水中四溴双酚A影响实验研究[J]. 地学前缘, 2019, 26(3): 255-262. |
[4] | 冯新斌, 尹润生, 俞奔, 杜布云, 陈玖斌. 汞同位素地球化学概述[J]. 地学前缘, 2015, 22(5): 124-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||