地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 60-77.DOI: 10.13745/j.esf.sf.2025.4.63

• 智能矿产预测 • 上一篇    下一篇

知识-数据联合驱动的可解释智能矿产预测研究:以四川可尔因矿集区为例

李楠1,2,3(), 尹世滔1,4, 柳炳利2, 肖克炎1, 王成辉1, 代鸿章1, 宋相龙1   

  1. 1.中国地质科学院矿产资源研究所, 北京 100037
    2.成都理工大学 数学科学学院, 四川 成都 610051
    3.中国地质科学院矿产资源研究所, 深地探测与矿产勘查全国重点实验室, 北京 100037
    4.中国地质大学(北京), 北京 100083
  • 收稿日期:2025-03-24 修回日期:2025-04-09 出版日期:2025-07-25 发布日期:2025-08-04
  • 作者简介:李 楠(1980—),男,研究员,主要从事三维地质建模和矿产资源定量预测评价方面的教学与研究工作。E-mail: linan@cags.ac.cn
  • 基金资助:
    国家重点研发计划项目(2021YFC2901905-3);国家重点研发计划项目(2023YFC2906403);中国地质调查局地质调查项目(DD20243233);国家自然科学基金项目(42272347)

A knowledge-data driven interpretable intelligent mineral prediction: A case study of the Keeryin Mineral Concentration Area, Sichuan Province

LI Nan1,2,3(), YIN Shitao1,4, LIU Bingli2, XIAO Keyan1, WANG Chenghui1, DAI Hongzhang1, SONG Xianglong1   

  1. 1. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
    2. School of Mathematical Sciences, Chengdu University of Technology, Chengdu 610051, China
    3. National Key Laboratory of Deep Earth Exploration and Mineral Exploration, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
    4. China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2025-03-24 Revised:2025-04-09 Online:2025-07-25 Published:2025-08-04

摘要:

随着人工智能和大数据技术的迅速发展,基于机器学习的矿产资源智能预测已成为当前研究热点。然而,部分机器学习模型嵌套的复杂非线性网络结构和抽象表达,具有高度不透明的黑盒属性,导致智能预测结果与成矿作用之间缺乏相关解释,降低了预测模型的泛化能力和预测结果的可靠程度。为解决以上问题,本研究提出了知识-数据联合驱动的可解释矿产资源智能预测方法。首先,采用最佳-最差法(BWM)建立了融合先验地质特征权重的集成学习智能预测模型,以强化模型预测效果。之后,使用从全局到局部,从特征到样本的多尺度多维度可解释性方法,解构预测结果,定量评价预测指标重要程度。最后,结合野外验证后的专家指导校正,实现地质找矿知识更新迭代,形成矿床知识嵌入和矿床知识发现完整闭环,进而提升矿产资源智能预测决策过程的透明性和预测结果的可靠性。以四川可尔因矿集区为例进行实验,圈定A类高潜力靶区8处,占总面积的6.58%,其中84%的矿床样本位于高潜力靶区,表明预测方法的稳定性。钠长石频谱、Na2O+K2O、环形构造、Li/La和二云母花岗岩依次成为关键预测特征,呈现出明显的有序性,经野外验证,证实其与可尔因伟晶岩型锂矿找矿模型密切相关。

关键词: 矿产资源定量预测, 可尔因矿集区, 知识嵌入, 集成学习, 可解释性, 野外验证

Abstract:

With the rapid advancement of AI and big data, machine learning-based mineral prospectivity mapping has become a research hotspot. However, models with deeply nested, nonlinear structures and abstract representations often exhibit opaque “black-box” characteristics. This lack of interpretability between predictions and metallogenic processes limits model generalization and reliability. To address this, we propose a knowledge-data driven interpretable prediction method. First, the Best-Worst Method(BWM) is used to derive geological feature weights for constructing an ensemble model, enhancing its performance. A multi-scale, multi-dimensional interpretability framework spanning from global to local levels and from feature-level to sample-level interpretations is then applied to deconstruct results and evaluate feature importance. Expert-guided corrections, informed by field validation, further refine the predictions, thereby forming a closed loop of knowledge embedding and discovery. This process improves workflow transparency and result reliability. Applied to the Keeryin area in Sichuan, the method identified eight high-potential Class A targets, occupying only 6.58% of the study area yet containing 84% of the known deposits. Key predictive features included remote sensing spectral response of albite/albite spectral signature, total alkali (Na2O+K2O) content, ring structures, Li/La ratio, and two-mica granite—as validated by their strong spatial correlation with known pegmatite-type lithium deposits in the field.

Key words: mineral resource quantitative prediction, Keeryin Mining Area, knowledge embedding, integrated learning, interpretability, field validation

中图分类号: