地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 131-149.DOI: 10.13745/j.esf.sf.2025.2.3
吴鹏飞1,2(), 吴俊1,2,*(
), 樊太亮1,2, 刘倩1,2, 张卫国1,2, 杨素举3, 夏永涛3, 兰明杰3
收稿日期:
2024-12-20
修回日期:
2025-02-18
出版日期:
2025-09-25
发布日期:
2025-10-14
通信作者:
吴俊
作者简介:
吴鹏飞(2000—),男,硕士研究生,主要从事深水地震沉积学方面的研究。E-mail: 18876059017@163.com
基金资助:
WU Pengfei1,2(), WU Jun1,2,*(
), FAN Tailiang1,2, LIU Qian1,2, ZHANG Weiguo1,2, YANG Suju3, XIA Yongtao3, LAN Mingjie3
Received:
2024-12-20
Revised:
2025-02-18
Online:
2025-09-25
Published:
2025-10-14
Contact:
WU Jun
摘要:
塔里木盆地顺南地区上奥陶统发育斜坡扇体系,多口井测试表明该层段存在气测异常,具有油气勘探价值。然而,针对该斜坡扇体系的特征认识不清,在一定程度上延缓了该区油气勘探进程。基于此,本研究综合利用顺南地区高精度三维地震和钻/测井等资料,明确研究区斜坡扇体系的地震与测井响应特征,阐明斜坡扇体系的沉积单元构成,揭示斜坡扇体系的沉积充填演化过程及其控制因素。研究表明:(1)顺南地区上奥陶统斜坡扇体系由水道、砂质朵叶体和泥质朵叶体共3种沉积单元构成,不同沉积单元的地震-测井响应存在显著差异。其中,水道对应中-强振幅、中-低频率和连续性好的“U”型、“V”型下切充填反射,以粉砂岩为主,自然伽马(GR)和声波时差(AC)曲线呈箱型;砂质朵叶体对应中-强振幅、中-低频率和连续性好的层状或丘状反射,以粉砂岩和粉砂质泥岩为主,GR曲线呈中-高值,深侧向电阻率(RD)曲线呈中-低值,两种曲线波动较大;泥质朵叶体对应中-弱振幅、高频率和连续性差的丘型反射或杂乱反射,以泥岩和粉砂质泥岩为主,GR曲线呈高值,RD曲线呈低值,整体波动小。(2)研究区斜坡扇体系共识别了8个砂质朵叶体、两个泥质朵叶体和多条水道。根据不同沉积单元的相互切割关系,将斜坡扇体系的沉积充填过程划分为3期。其中,早期发育1~3号砂质朵叶体和水道,中期发育Ⅰ和Ⅱ号泥质朵叶体、4号砂质朵叶体和水道,晚期发育5~8号砂质朵叶体和水道。(3)构造活动、海平面升降和物源供给控制着顺南地区斜坡扇体系的沉积充填演化进程。其中,构造活动为研究区斜坡扇体系提供了地形条件和物质输送基础,海平面升降控制物源供给量和沉积单元发育位置,物源的物质组成和供给量决定沉积单元类型和发育的规模。(4)顺南地区具有良好的生储盖配置关系,外加走滑断裂有效地改造储集空间并沟通源储间油气运移,指明了油气富集的有利区带位于走滑断裂带附近。
中图分类号:
吴鹏飞, 吴俊, 樊太亮, 刘倩, 张卫国, 杨素举, 夏永涛, 兰明杰. 塔里木顺南地区上奥陶统斜坡扇体系沉积单元构成及其演化特征[J]. 地学前缘, 2025, 32(5): 131-149.
WU Pengfei, WU Jun, FAN Tailiang, LIU Qian, ZHANG Weiguo, YANG Suju, XIA Yongtao, LAN Mingjie. Sedimentary units composition and evolution characteristics of the slope fan system of the Upper Ordovician in the Shunnan area, Tarim Basin[J]. Earth Science Frontiers, 2025, 32(5): 131-149.
图1 塔里木盆地顺南地区构造单元与上奥陶统综合柱状图(据文献[40]修改) A—塔里木盆地构造单元划分图;B—顺南地区构造单元划分图;C—顺南2井上奥陶统却尔却克组层序地层综合柱状图。
Fig.1 Tectonic unit and column chart of the Upper Ordovician in the Shunnan area, Tarim Basin. Modified after [40].
图2 上奥陶统却尔却克组一段至五段在不同区域的地震响应特征 A—顺南—满加尔—塔东地区上奥陶统却尔却克组差异性分布,满加尔凹陷发育完整的却一段至却五段,塔东地区却二段至却五段遭到不同程度的剥蚀,顺南地区却一段沉积缺失,故不发育(剖面位置见图1A);B—顺南地区却尔却克组地震响应,研究区顺南地区却一段不发育,却三段表现为杂乱的弱反射,与却二段楔形前积反射和却四段前积反射差别大(剖面位置见图1B)。
Fig.2 Seismic response characteristics of the Upper Ordovician Queerqueke Formation (from 1st to 5th members) in different regions
图4 顺南地区上奥陶统斜坡扇体系地震响应特征 A—${{T}_{7}}^{2}$和Sb3界面三维显示,顺南地区西接陡峭的塔中隆起,总体为南高北低的构造格局,物源经塔中隆起进入顺南地区,断裂带低部位和陡崖与楔形沉积体夹持区域为搬运通道;B—却三段时间域厚度图,物源经塔中隆起进入顺南地区,沉积物在搬运通道下游沉积较厚;C—顺南地区南北向地震剖面,却三段斜坡扇体系地层倾角大,整体表现为杂乱的弱反射,横向变化快(剖面位置见图1B)。
Fig.4 Seismic response characteristics of slope fan system in the Upper Ordovician in the Shunnan area
图5 顺南地区斜坡扇体系水道分频RGB颜色融合属性和地震剖面反射特征 A~D—垂直物源的水道剖面,可见两期水道下切充填的地震反射特征和叠合-分流-聚合的发育特征;E—顺物源的水道剖面,两期水道在走滑断裂发育的区域表现为叠瓦状前积;F—水道分频RGB颜色融合属性图,可见叠合-走滑断裂带分流-聚合发育的特征。
Fig.5 Channel spectrum decomposition RGB color fusion and seismic profile reflection characteristics of the slope fan system in the Shunnan area
图6 顺南地区却三段底面均方根振幅属性平面图与地震沉积解释 A—却三段底面RMS属性平面图;B—浅黄色透明区为砂质朵叶体,集中在陡坡下发育,浅蓝色透明区发育大型主干水道,暗色透明区为泥质朵叶体,北部可见晚期砂质朵叶体内部支流水道偏折。
Fig.6 RMS attribute map and its seismic sedimentologic interpretation at the bottom surface of 3rd member of the Queerqueke Formation in the Shunnan area
图7 顺南地区却三段顶面均方根振幅属性平面图与地震沉积解释 A—却三段顶面RMS属性平面图;B—浅黄色透明区为砂质朵叶体,4号砂质朵叶体在陡坡下孤立发育,5~8号砂质朵叶体叠接向盆内推进,水道和沉积物向北偏折,8号砂质朵叶体内部的支流水道见图6。
Fig.7 RMS attribute map and its seismic sedimentologic interpretation at the top surface of 3rd member of the Queerqueke Formation in the Shunnan area
图8 顺南地区斜坡扇体系砂质朵叶体与泥质朵叶体地震接触关系(剖面位置见图6) A—Ⅱ号泥质朵叶体主干水道侵蚀Ⅰ号泥质朵叶体、4号和2号砂质朵叶体,水道侵蚀6号砂质朵叶体;B—泥质朵叶体侵蚀Ⅰ号泥质朵叶体和3号砂质朵叶体,7号砂质朵叶体内部支流水道发育。
Fig.8 Seismic contact relationship between sandy lobes and muddy lobes of the slope fan system in the Shunnan area. The profile locations are shown in Fig.6
图9 塔里木盆地顺南地区上奥陶统斜坡扇体系沉积模式图 A—沉积早期处于海平面上升阶段,1~3号砂质朵叶体在陡崖下近岸发育,同时东南部主干水道发育;B—沉积中期处于海平面下降阶段,富泥的物源大规模供给,发育Ⅰ、Ⅱ号泥质朵叶体和4号砂质朵叶体,同时东南部主干水道逐渐消亡;C—沉积晚期海平面持续下降,富砂的物源大规模供给,5~8号砂质朵叶体向盆内推进,过程中水道与沉积物受到低部位牵引向西北偏折。
Fig.9 Sedimentary model of slope fan system in the Upper Ordovician in the Shunnan area, Tarim Basin
图10 顺南蓬1井斜坡扇体系基于测井孔隙度解释的水道砂体分布和储盖垂向组合
Fig.10 Channel sandbody distribution and reservoir cap vertical combination of the slope fan system based on logging porosity interpretation of well Shunnanpeng 1
图11 顺南地区上奥陶统斜坡扇体系预测有利勘探区与油气成藏模式 A—斜坡扇体系预测有利勘探区,砂质朵叶体在塔中Ⅰ号断裂带下盘和东部发育,水道在砂质朵叶体内部和东部发育,东部走滑断裂带附近为有利勘探区域;B—斜坡扇体系油气成藏模式图,寒武系-中下奥陶统烃源岩供源,上奥陶统水道和砂质朵叶体砂体作为储层,上覆泥岩作为盖层,形成下生上储型配置关系,走滑断裂沟通油源与储层,有利于油气成藏。
Fig.11 Prediction of favorable exploration area and hydrocarbon accumulation model of the slop fan system in the Upper Ordovician in the Shunnan area
[1] | NORMARK W R, POSAMENTIER H, MUTTI E. Turbidite systems: state of the art and future directions[J]. Reviews of Geophysics, 1993, 31(2): 91-116. |
[2] | POSAMENTIER H W, KOLLA V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings[J]. Journal of Sedimentary Research, 2003, 73(3): 367-388. |
[3] | MUTTI E, BERNOULLI D, LUCCHI F R, et al. Turbidites and turbidity currents from Alpine ‘flysch’ to the exploration of continental margins[J]. Sedimentology, 2009, 56(1): 267-318. |
[4] | ZHANG M L, LIN C S, LI H, et al. Late Oligocene to Early Miocene delta and linked slope fan systems: depositional architecture and sediment dispersal, the Pearl River Mouth Basin[J]. Sedimentology, 2023, 70(3): 759-782. |
[5] | RICHARDS M, BOWMAN M. Submarine fans and related depositional systems II: variability in reservoir architecture and wireline log character[J]. Marine and Petroleum Geology, 1998, 15(8): 821-839. |
[6] | WEI W, ZHANG C C, ZHANG S, et al. Study on the Cretaceous turbidite and reservoir features in the Qingshankou Formation in Northern Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2016, 78: 797-806. |
[7] | 操应长, 刘晖. 湖盆三角洲沉积坡度带特征及其与滑塌浊积岩分布关系的初步探讨[J]. 地质论评, 2007, 53(4): 454-459, 578. |
[8] | 石巨业, 樊太亮, 于东方, 等. 南图尔盖盆地1057区块滑塌扇体地质特征分析[J]. 特种油气藏, 2016, 23(1): 11-15, 151. |
[9] | 陶倩倩, 周家雄, 孙文钊, 等. 滑塌浊积扇内幕结构及成因: 以涠西南凹陷流一段上亚段为例[J]. 石油地球物理勘探, 2019, 54(2): 423-432, 240. |
[10] | 蒲秀刚, 赵贤正, 王家豪, 等. 渤海湾盆地滨海地区古近系沙河街组一段滑塌型湖底扇储集层特征及主控因素[J]. 石油勘探与开发, 2020, 47(5): 913-924. |
[11] | 陈彬滔, 马轮, 洪亮, 等. 断陷湖盆陡坡带扇三角洲—滑塌扇复合扇体的沉积演化及油气地质意义: 以中非地区Melut盆地A凹陷白垩系为例[J]. 沉积学报, 2024, 42(3): 1058-1072. |
[12] | 刘钰星, 陈宇航, 范国章, 等. 底流与重力流交互作用下的朵体沉积特征:以东非鲁伍马盆地中新统为例[J]. 古地理学报, 2024, 26(4): 1005-1016. |
[13] | ANJOS S M, SOMBRA C L, SPADINI A R. Petroleum exploration and production in Brazil: from onshore to ultra-deepwaters[J]. Petroleum Exploration and Development, 2024, 51(4): 912-924. |
[14] | 王允洪, 黄建军, 刘婷婷, 等. 坎波斯盆地X油田Marlim组深水扇弯曲水道形态表征及其时空演化[J]. 特种油气藏, 2020, 27(2): 57-62. |
[15] | 陈飞, 范洪军, 范廷恩, 等. 西非尼日尔三角洲盆地A油田深水浊积水道沉积体系沉积特征[J]. 地学前缘, 2023, 30(4): 209-217. |
[16] | 冯志强, 郭丰涛, 张忠民, 等. 转换型陆缘: 尼日尔三角洲盆地成因类型再认识[J]. 岩石学报, 2022, 38(9): 2565-2580. |
[17] | DILLON L, SCHWEDERSKY G, VÁSQUEZ G, et al. A multiscale DHI elastic attributes evaluation[J]. The Leading Edge, 2003, 22(10): 1024-1029. |
[18] | 王大鹏, 孔祥宇, 田琨, 等. 2023全球重大油气发现及2024勘探展望[J]. 世界石油工业, 2024, 31(4): 48-57. |
[19] | 温志新, 徐洪, 王兆明, 等. 被动大陆边缘盆地分类及其油气分布规律[J]. 石油勘探与开发, 2016, 43(5): 678-688. |
[20] | 王金铎, 韩文功, 于建国, 等. 东营凹陷沙三段浊积岩体系及其油气勘探意义[J]. 石油学报, 2003, 24(6): 24-29. |
[21] | 马文睿, 傅强, 谭思哲. 高邮凹陷黄珏—马家嘴地区戴南组重力流沉积及其成因[J]. 地球科学, 2014, 39(5): 601-610. |
[22] | DONDURUR D, GÜNAY Ç. Acoustic structure and recent sediment transport processes on the continental slope of Yeşilırmak River fan, Eastern Black Sea[J]. Marine Geology, 2007, 237(1/2): 37-53. |
[23] | HENRY L C, FAERBER R D, STEINHOFF D, et al. Ponding and compartmentalization of a giant Paleogene slope fan by mass transport complexes, offshore Newfoundland, Canada[J]. Marine and Petroleum Geology, 2024, 167: 106939. |
[24] | LI L, WANG Z Z, WANG W F, et al. Spectral decomposition predicts the distribution of steep slope fans in the rift basin of Eastern China[J]. Journal of Applied Geophysics, 2024, 230: 105543. |
[25] | 王俊, 赵家宏, 腾军, 等. 浅水三角洲前缘砂体地震沉积学研究: 以松南乾安地区上白垩统青三段为例[J]. 沉积学报, 2018, 36(3): 570-583. |
[26] | 徐深谋. 白音查干凹陷白垩系地震沉积学及砂体预测[D]. 北京: 中国石油大学(北京), 2019. |
[27] | 刘永权. 塔里木盆地塔东地区晚奥陶世桑塔木组沉积层序分析及储层特征[D]. 北京: 中国地质大学(北京), 2012. |
[28] | 肖莹莹. 塔里木盆地寒武—奥陶系台地结构特征及其对烃源岩的制约[D]. 北京: 中国地质大学(北京), 2012. |
[29] | 石开波, 蒋启财, 刘波, 等. 塔里木盆地东北缘库鲁克塔格地区寒武纪—奥陶纪沉积特征及演化[J]. 岩石学报, 2017, 33(4): 1204-1220. |
[30] | 杨子成, 李强, 赵亮, 等. 塔东地区上奥陶统层序地层特征[J]. 海洋地质前沿, 2018, 34(2): 1-9. |
[31] | 云露, 曹自成. 塔里木盆地顺南地区奥陶系油气富集与勘探潜力[J]. 石油与天然气地质, 2014, 35(6): 788-797. |
[32] | 高志勇, 张水昌, 李建军, 等. 塔里木盆地东部中-上奥陶统却尔却克组海相碎屑岩中的有效烃源岩[J]. 石油学报, 2011, 32(1): 32-40. |
[33] | 王成林, 卢玉红, 邬光辉, 等. 塔里木盆地塔东地区却尔却克组烃源岩的发现及其意义[J]. 天然气工业, 2011, 31(5): 45-48, 116-117. |
[34] | 付超. 塔东却尔却克组层序地层及沉积特征研究[D]. 北京: 中国地质大学(北京), 2012. |
[35] | 钟梁旋子. 塔里木盆地卡塔克隆起东南部奥陶纪层序地层与沉积特征研究[D]. 成都: 成都理工大学, 2013. |
[36] | 蔡郁文. 塔里木盆地东部地区烃源岩分析及评价[D]. 北京: 中国地质大学(北京), 2014. |
[37] | 陈强路, 赵欣, 储呈林, 等. 塔里木盆地东北部中—上奥陶统沉积物源与构造背景相关性分析[J]. 地学前缘, 2015, 22(1): 53-66. |
[38] | 刘忠宝, 于炳松, 陈晓林, 等. 塔里木盆地塔东地区中—上奥陶统海底扇浊积岩层序地层格架及沉积特征[J]. 现代地质, 2003, 17(4): 408-414. |
[39] | 何登发, 贾承造, 李德生, 等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(1): 64-77. |
[40] | 康仁东, 孟万斌, 肖春晖. 塔里木盆地顺南地区奥陶系鹰山组白云岩形成机制及其发育模式[J]. 石油实验地质, 2020, 42(6): 900-909. |
[41] | 林畅松, 李思田, 刘景彦, 等. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J]. 岩石学报, 2011, 27(1): 210-218. |
[42] | 李国贤. 塔里木盆地加里东中期断裂体系研究[D]. 成都: 成都理工大学, 2021. |
[43] | 姜忠正, 唐大卿, 沙旭光, 等. 塔里木盆地塔中隆起中北部地区断裂构造特征及演化[J]. 地质科技通报, 2024, 43(3): 120-132. |
[44] | 谷雨, 吴俊, 樊太亮, 等. 塔北塔中地区中、下寒武统岩性组合与变形特征及其对油气输导影响[J]. 地学前缘, 2024, 31(5): 313-331. |
[45] | 李培军, 陈红汉, 唐大卿, 等. 塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系[J]. 地球科学, 2017, 42(1): 93-104. |
[46] | 董顺利. 塔里木盆地环满加尔地区早古生代中晚期沉积物源体系及构造: 古地理格局[D]. 北京: 中国科学院大学, 2013. |
[47] | 高华华, 何登发, 童晓光, 等. 塔里木盆地寒武纪构造-沉积环境与原型盆地演化[J]. 现代地质, 2017, 31(1): 102-118. |
[48] | 王恕一, 黄继文, 蒋小琼. 塔里木盆地上奥陶统沉积及古地理特征[J]. 石油实验地质, 2006, 28(3): 236-242, 248. |
[49] | 赵宗举, 潘懋, 杨海军, 等. 塔里木盆地中-上奥陶统浊积岩物源分析及大地构造意义[J]. 地质科学, 2010, 45(3): 681-697. |
[50] | 鲁红, 牛延宏, 李建民. 一种计算泥质砂岩储层有效孔隙度的三参数测井解释方法[J]. 大庆石油地质与开发, 1998, 17(6): 39-40, 50. |
[51] | 冯智慧, 要丹, 陈树民, 等. 频谱分解技术在敖南地区致密砂体预测中的应用[J]. 大庆石油地质与开发, 2016, 35(6): 132-137. |
[52] | 张延章, 尹寿鹏, 张巧玲, 等. 地震分频技术的地质内涵及其效果分析[J]. 石油勘探与开发, 2006, 33(1): 64-66, 71. |
[53] | 袁志云, 孔令洪, 王成林. 频谱分解技术在储层预测中的应用[J]. 石油地球物理勘探, 2006, 41(增刊1): 11-15, 142-143. |
[54] | 尹继全, 衣英杰. 地震沉积学在深水沉积储层预测中的应用[J]. 地球物理学进展, 2013, 28(5): 2626-2633. |
[55] | 陈雨红, 杨长春, 曹齐放, 等. 几种时频分析方法比较[J]. 地球物理学进展, 2006, 21(4): 1180-1185. |
[56] | 曾洪流. 地震沉积学在中国: 回顾和展望[J]. 沉积学报, 2011, 29(3): 417-426. |
[57] | 王开燕, 周妍, 陈彦奇, 等. 基于谱分解和地震多属性储层厚度的预测[J]. 地球物理学进展, 2014, 29(3): 1271-1276. |
[58] | 邵荣峰, 方伍宝, 李振春, 等. 地震分频在河道砂体中的研究[C]// 2014年中国地球科学联合学术年会——专题18: 油藏地球物理论文集. 北京, 2014: 57. |
[59] | 姜秀娣, 丁继才, 翁斌, 等. RGB分频混色技术的适用性研究[C]// 中国地球物理2013——第二十专题论文集. 昆明, 2013: 134-135. |
[60] | 朱振宇, 高佳伦, 姜秀娣, 等. 基于三参数小波的频谱分解方法[J]. 石油地球物理勘探, 2018, 53(6): 1299-1306, 1116. |
[61] | 贾玉茹. 基于Marr小波变换与支持向量机的分频多属性反演[J]. 内江科技, 2012, 33(11): 119-120. |
[62] | 杨民鑫, 赵晓明, 梁岳立, 等. 基于分频RGB融合技术的储层构型精细解剖: 以东海盆地西湖凹陷渐新统花港组为例[J]. 天然气地球科学, 2024, 35(7): 1323-1338. |
[63] | 袁悦. 基于分频CMY融合优化的地震沉积学技术在西湖凹陷浅层河道刻画中的应用[J]. 工程地球物理学报, 2024, 21(4): 645-653. |
[64] | DEPTUCK M E, SYLVESTER Z, PIRMEZ C, et al. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, Western Niger Delta slope[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 406-433. |
[65] | HANSEN L, L’HEUREUX J S, SAUVIN G, et al. Effects of mass-wasting on the stratigraphic architecture of a fjord-valley fill: correlation of onshore, shear-wave seismic and marine seismic data at Trondheim, Norway[J]. Sedimentary Geology, 2013, 289: 1-18. |
[66] | 蔡露露, 王雅宁, 王颖, 等. 西非深水沉积类型特征及油气勘探意义[J]. 石油学报, 2016, 37(增刊1): 131-142. |
[67] | 陈华, 林畅松, 张忠民, 等. 西非下刚果—刚果扇盆地A区块中新统深水水道体系沉积特征及演化[J]. 石油实验地质, 2021, 43(3): 476-486. |
[68] | 陈飞, 蔡文涛, 范洪军, 等. 西非海岸盆地海底麻坑沉积特征研究: 以尼日尓三角洲前缘深水区A油田为例[J]. 沉积学报, 2025(1): 99-107. |
[69] | 田纳新, 龚承林, 吴高奎, 等. 重力流与海底地貌动态相互作用下深水沉积体系发育演化: 以大西洋赤道段菩提瓜尔盆地为例[J]. 石油与天然气地质, 2024, 45(1): 15-30. |
[70] | 刘子玉, 贾万丽, 李建平, 等. 浊积扇沉积构成及主要单元储层差异: 以琼东南盆地梅山组为例[J]. 地质科学, 2024, 59(5): 1268-1279. |
[71] | SALLER A, WERNER K, SUGIAMAN F, et al. Characteristics of Pleistocene deep-water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan, Indonesia[J]. AAPG Bulletin, 2008, 92: 919-949. |
[72] | 张光亚, 刘伟, 张磊, 等. 塔里木克拉通寒武纪—奥陶纪原型盆地、岩相古地理与油气[J]. 地学前缘, 2015, 22(3): 269-276. |
[73] | 王斌, 赵永强, 周雨双, 等. 塔里木盆地环满加尔坳陷中上奥陶统碎屑岩成因与储层特征[C]// 2015年全国沉积学大会沉积学与非常规资源论文摘要集. 武汉, 2015: 218-219. |
[74] | GONG C L, STEEL R J, WANG Y M, et al. Grain size and transport regime at shelf edge as fundamental controls on delivery of shelf-edge sands to deepwater[J]. Earth-Science Reviews, 2016, 157: 32-60. |
[75] | 王英民, 王海荣, 邱燕, 等. 深水沉积的动力学机制和响应[J]. 沉积学报, 2007, 25(4): 495-504. |
[76] | GONG C L, WANG Y M, ZHENG R C, et al. Middle Miocene reworked turbidites in the Baiyun Sag of the Pearl River Mouth Basin, Northern South China Sea margin: processes, genesis, and implications[J]. Journal of Asian Earth Sciences, 2016, 128: 116-129. |
[77] | 郭景祥. 渤海湾盆地埕北低凸起东部斜坡带东三段深水重力流沉积体系研究[D]. 北京: 中国地质大学(北京), 2020. |
[78] | SCACCHIA E, TINTERRI R, GAMBERI F. Downslope evolution of supercritical bedforms in a confined deep-sea fan lobe, Amantea Fan, Paola Basin (Southeastern Tyrrhenian Sea)[J]. Sedimentary Geology, 2024, 466: 106636. |
[79] | LIN C, LIU J, ERIKSSON K, et al. Late Ordovician, deep-water gravity-flow deposits, Palaeogeography and tectonic setting, Tarim Basin, Northwest China[J]. Basin Research, 2014, 26(2): 297-319. |
[80] | 赵宗举, 周新源, 郑兴平, 等. 塔里木盆地主力烃源岩的诸多证据[J]. 石油学报, 2005, 26(3): 10-15. |
[81] | LIU J Y, LIN C S, YANG H J, et al. Three depositional models interpreting the Late Ordovician deep-water gravity flow systems in the Tarim Basin, Western China[J]. Geological Journal, 2018, 53(5): 2240-2257. |
[82] | LIN C S, YANG H J, LIU J Y, et al. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: significance for the evolution of paleo-uplifts and tectonic geography during deformation[J]. Journal of Asian Earth Sciences, 2012, 46: 1-19. |
[83] | 闫臻, 王宗起, 闫全人, 等. 造山带汇聚板块边缘沉积盆地的鉴别与恢复[J]. 岩石学报, 2018, 34(7): 1943-1958. |
[84] | 冉逸轩, 周翔. 鄂尔多斯盆地西南部延长组6段重力流沉积特征及其油气地质意义[J]. 沉积学报, 2020, 38(3): 571-579. |
[1] | 金燕林, 张慧涛, 刘遥, 吉玉雯. 塔河油田层控岩溶型储集体发育特征及典型岩溶模式探讨[J]. 地学前缘, 2023, 30(6): 125-134. |
[2] | 马雪莹, 邓胜徽, 卢远征, 吴怀春, 罗忠, 樊茹, 李鑫, 房强. 华南上奥陶统宝塔组天文年代格架及其地质意义[J]. 地学前缘, 2019, 26(2): 281-291. |
[3] | 陈强路, 赵欣, 储呈林, 史政, 杨鑫. 塔里木盆地东北部中—上奥陶统沉积物源与构造背景相关性分析[J]. 地学前缘, 2015, 22(1): 53-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||