地学前缘 ›› 2022, Vol. 29 ›› Issue (2): 393-401.DOI: 10.13745/j.esf.sf.2022.2.3
所属专题: 印度-欧亚大陆碰撞及其远程效应
• “印度-欧亚大陆碰撞及其远程效应”专栏之四 • 上一篇 下一篇
薛帅1(), 卢占武1,*(
), 李文辉1, 王光文1, 王海燕1, 梁宏达2
收稿日期:
2022-01-10
修回日期:
2022-02-14
出版日期:
2022-03-25
发布日期:
2022-03-31
通信作者:
卢占武
作者简介:
薛 帅(1988—),男,助理研究员,主要从事大地电磁法及其应用研究。E-mail: xueshuai1211@163.com
基金资助:
XUE Shuai1(), LU Zhanwu1,*(
), LI Wenhui1, WANG Guangwen1, WANG Haiyan1, LIANG Hongda2
Received:
2022-01-10
Revised:
2022-02-14
Online:
2022-03-25
Published:
2022-03-31
Contact:
LU Zhanwu
摘要:
藏南裂谷作为青藏高原最显著的伸展构造样式之一,是研究高原生长过程的重要窗口,但目前其深部成因机制仍存在较大争议。本文利用沿错那—沃卡裂谷中部的大地电磁数据,分析裂谷区域的大地电磁测深曲线特征和相位张量,并通过三维大地电磁反演获得邛多江地堑和沃卡地堑深部电性结构。三维大地电磁反演结果显示,沃卡地堑和邛多江地堑深部存在一条连续的显著高导异常,并呈现“俯冲”形态,且上覆高阻结构体,而在邛多江地堑两侧浅部则分布低阻异常。结合早期的研究结果,本文支持错那—沃卡裂谷深部的高导异常为地壳部分熔融,可能与南向地壳流相关,并研究认为在南北向持续挤压作用下,裂谷下方的弱地壳层,通过解耦上地壳和下部地壳,促进了藏南裂谷系的发育。
中图分类号:
薛帅, 卢占武, 李文辉, 王光文, 王海燕, 梁宏达. 青藏高原错那—沃卡裂谷中部电性结构及其动力学意义[J]. 地学前缘, 2022, 29(2): 393-401.
XUE Shuai, LU Zhanwu, LI Wenhui, WANG Guangwen, WANG Haiyan, LIANG Hongda. Electrical resistivity structure beneath the central Cona-Oiga rift, southern Tibet, and its implications for regional dynamics[J]. Earth Science Frontiers, 2022, 29(2): 393-401.
图1 藏南喜马拉雅造山带地质简图和错那—沃卡裂谷地形和地质简图(a据文献[19]修改;b据文献[19,38]修改)
Fig.1 (a) Geological sketch maps of the Himalayan orogenic belt (modified from [19]) and the Cona-Oiga rift (modified from [19,38]) in southern Tibet
图2 典型测点大地电磁测深曲线(033、048、055和061,测点位置见图1b) 图中红色空心圆和蓝色空心菱形分别为观测的xy和yx模式, 红色和蓝色实线则为相应的反演模拟结果。
Fig.2 Typical MT sounding curves for the Cuonadong dome (see Fig.1b for locations of sites 033, 048, 055, 061). Red hollow circles and blue hollow rhombi represent observation modes xy and yx. Red and blue solid lines denote the corresponding inversion results.
图4 南北向大地电磁测线三维反演结果 C1、C2和LR1、LR2代表高导或低阻异常,R1和R2代表高阻结构。
Fig.4 N-S vertical cross section 3D inversion result. C1/C2, LR1/LR2, R1/R2 indicate high conductivity and low- and high-resistivity features, respectively.
[1] |
TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547):1671-1677.
DOI URL |
[2] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76:1-131.
DOI URL |
[3] |
ZHANG J J, SANTOSH M, WANG X X, et al. Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 2012, 21:939-960.
DOI URL |
[4] | 侯增谦, 曲晓明, 杨竹森, 等. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6):629-651. |
[5] | 戚学祥, 曾令森, 孟祥金, 等. 特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 2008, 24(7):1501-1508. |
[6] |
HOU Z Q, COOK N J. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36:2-24.
DOI URL |
[7] |
ARMIJO R, TAPPONNIER P, MERCIER J L, et al. Quaternary extension in southern Tibet: field observations and tectonic implications[J]. Journal of Geophysical Research, 1986, 91(B14):13803-13872.
DOI URL |
[8] |
ARMIJO R, TAPPONNIER P, HAN T. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth and Planets, 1989, 94(B3):2787-2838.
DOI URL |
[9] | 张进江, 丁林. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 2003, 38(2):179-189. |
[10] | 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6):639-649. |
[11] | 张进江, 郭磊, 张波. 北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征[J]. 地质科学, 2007, 42(1):16-30. |
[12] | 许志琴, 杨经绥, 戚学祥, 等. 印度/亚洲碰撞: 南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论[J]. 地质通报, 2006, 25(1/2):1-14. |
[13] | 莫宣学, 潘桂堂. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6):43-61. |
[14] | 丁林, 岳雅慧, 蔡福龙, 等. 西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约[J]. 地质学报, 2006, 80(9):1252-1261. |
[15] |
ZHANG J J, GUO L. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system[J]. Journal of Asian Earth Sciences, 2007, 29:722-736.
DOI URL |
[16] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1):1-36. |
[17] |
GAO R, LU Z W, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9:555-560.
DOI URL |
[18] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47:871-880. |
[19] |
ZENG L, GAO L E, XIE K, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303:251-266
DOI URL |
[20] | TAYLOR M, YIN A, RYERSON F J, et al. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 2003, 22(4). DOI: 10.1029/2002TC001361. |
[21] |
MCCAFFREY R, NABELEK J. Role of oblique convergence in the active deformation of the Himalaya and southern Tibetan Plateau[J]. Geology, 1998, 26(8):691-694.
DOI URL |
[22] |
SEEBER L, PECHER A. Strain partitioning along the Himalayan arc and the Nanga Parbat antiform[J]. Geology, 1998, 26(9):791-794.
DOI URL |
[23] |
PANG Y J, ZHANG H, GERYA T V, et al. The mechanism and dynamics of N-S rifting in southern Tibet: insight from 3-D thermomechanical modeling[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1):859-877.
DOI URL |
[24] | XUE S, CHEN Y, LIANG H D, et al. Deep electrical resistivity structure across the Gyaring Co fault in Central Tibet revealed by magnetotelluric data and its implication[J]. Tectonophysics, 2021, 809. https://doi.org/10.1016/j.tecto.2021.228835 . |
[25] |
ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276:788-790.
DOI URL |
[26] |
CLARK M K, ROYDEN L H. Topographic ooze Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703-706.
DOI URL |
[27] |
UNSWORTH M J, JONES A G, WEI W B, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064):78-81.
DOI URL |
[28] | UNSWORTH M, WEI W B, JONES A G, et al. Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2). DOI: 10.1029/2002JB002305. |
[29] |
BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414:738-742.
DOI URL |
[30] |
BAI D H, UNSWORTH M J, MEJU M A, et al. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 2010, 3(5):358-362.
DOI URL |
[31] |
NABELEK J, HETENYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325:1371-1374.
DOI URL |
[32] | 金胜, 魏文博, 汪硕, 等. 青藏高原地壳高导层的成因及动力学意义探讨:大地电磁探测提供的证据[J]. 地球物理学报, 2010, 53(10):2376-2385. |
[33] |
ZHAO G Z, UNSWORTH M J, ZHAN Y, et al. Crustal structure and rheology of the Longmenshan and Wenchuan MW 7.9 earthquake epicentral area from magnetotelluric data[J]. Geology, 2012, 40(12):1139-1142.
DOI URL |
[34] |
XUE S, BAI D, CHEN Y, et al. Contrasting crustal deformation mechanisms in the Longmenshan and West Qinling orogenic belts, NE Tibet, revealed by magnetotelluric data[J]. Journal of Asian Earth Sciences, 2019, 176:120-128.
DOI URL |
[35] | DONG H, WEI W B, JIN S, et al. Shaping the surface deformation of central and south Tibetan Plateau: insights from magnetotelluric array data [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(9): e2019JB019206. |
[36] |
LEE J, MCCLELLAND W, WANG Y, et al. Oligocene-miocene middle crustal flow in southern Tibet: geochronology of Mabja dome[J]. Geological Society, London, Special Publications, 2006, 268(1):445-469.
DOI URL |
[37] |
CHEN Y, LI W, YUAN X H, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413:13-24.
DOI URL |
[38] | 吴中海, 张永双, 胡道功, 等. 西藏错那—沃卡裂谷带中段邛多江地堑晚新生代正断层作用[J]. 地质力学学报, 2007, 13(4):297-306. |
[39] | 徐义贤, 郑建平, 杨晓志, 等. 岩石圈中部不连续面的成因及其动力学意义[J]. 科学通报, 2019, 64(22):2305-2315. |
[40] | 胡祥云, 林武乐, 杨文采, 等. 克拉通岩石圈电性结构研究进展[J]. 中国科学: 地球科学, 2020, 50(11):1533-1552. |
[41] |
CHEN L S, BOOKER J R, JONES A G, et al. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying[J]. Science, 1996, 274:1694-1696.
DOI URL |
[42] |
XIE C L, JIN S, WEI W B, et al. Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data[J]. Earth Planets and Space, 2017, 69(1):1-17.
DOI URL |
[43] | 陈小斌, 叶涛, 蔡军涛, 等. 大地电磁资料精细处理和二维反演解释技术研究(七):云南盈江—龙陵地震区深部电性结构及孕震环境[J]. 地球物理学报, 2019, 62(4):1377-1393. |
[44] | 王绪本, 张刚, 周军, 等. 龙门山构造带壳幔电性结构特征及其与汶川、芦山强震关系[J]. 地球物理学报, 2018, 61(5):1984-1995. |
[45] | 曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义[J]. 科学通报, 2009, 54(3):373-381. |
[46] | 吴中海, 张永双, 胡道功, 等. 西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨[J]. 地质学报, 2007, 81(10):1328-1337. |
[47] | 吴中海, 张永双, 胡道功, 等. 藏南错那—沃卡裂谷的第四纪正断层作用及其特征[J]. 地震地质, 2008, 30(1):144-160. |
[48] | 哈广浩, 吴中海, 何林. 藏南邛多江地堑的晚新生代沉积地层及对南北向裂谷形成时代的初步限定[J]. 地质学报, 2018, 92(10):2051-2067. |
[49] | 潘桂堂, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3):521-533. |
[50] | 张泽明, 丁慧霞, 董昕, 等. 冈底斯弧的岩浆作用: 从新特提斯俯冲到印度-亚洲碰撞[J]. 地学前缘, 2018, 25(6):78-91. |
[51] | 熊发挥, 杨经绥, 巴登珠, 等. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 2014, 30(8):2137-2163. |
[52] | 徐向珍, 杨经绥, 熊发挥, 等. 西藏罗布莎康金拉铬铁矿区地幔橄榄岩锆石SHRIMP U-Pb年龄及地质意义[J]. 地质学报, 2016, 90(11):3215-3226. |
[53] | 曾令森, 高利娥. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报, 2017, 33(5):1420-1444. |
[54] | 曾令森, 赵令浩, 高利娥, 等. 喜马拉雅造山带中新世岩浆型石榴子石的矿物化学特征: 从高Sr/Y 花岗岩到淡色花岗岩[J]. 岩石学报, 2019, 35(6):1599-1626. |
[55] | 高利娥, 曾令森, 谢克家. 北喜马拉雅片麻岩穹隆始新世高级变质和深熔作用的厘定[J]. 科学通报, 2011, 56(36):3078-3090. |
[56] | 聂凤军, 胡朋, 江思宏, 等. 藏南邛多江地区二长花岗岩Ar-Ar同位素年龄及其地质意义[J]. 岩石学报, 2006, 22(11):2704-2710. |
[57] | 王思琪. 西藏古堆高温地热系统水文地球化学过程与形成机理[J]. 北京: 中国地质大学(北京), 2017. |
[58] |
EGBERT G D. Robust multiple-station magnetotelluric data processing[J]. Geophysical Journal International, 1997, 130(2):475-496.
DOI URL |
[59] |
BOOKER J R. The Magnetotelluric phase tensor: a critical review[J]. Surveys in Geophysics, 2014, 35(1):7-40.
DOI URL |
[60] |
LIANG H D, JIN S, WEI W B, et al. Lithospheric electrical structure of the Middle Lhasa Terrane in the South Tibetan Plateau[J]. Tectonophysics, 2018, 731/732:95-103.
DOI URL |
[61] |
EGBERT G D, KELBERT A. Computational recipes for electromagnetic inverse problems[J]. Geophysical Journal International, 2012, 189(1):251-267.
DOI URL |
[62] | 殷长春, 刘云鹤, 熊彬. 地球物理三维电磁反演方法研究动态[J]. 中国科学: 地球科学, 2020, 50(3):432-435. |
[63] |
CHEN J Y, GAILLARD F, VILLAROS A, et al. Melting conditions in the modern Tibetan crust since the Miocene[J]. Nature Communications, 2018, 9(1):1-13.
DOI URL |
[64] | 吴珍汉, 叶培盛, 吴中海, 等. 特提斯喜马拉雅构造带雅拉香波穹隆构造热事件LA-ICP-MS 锆石U-Pb年龄证据[J]. 地质通报, 2014, 33(5):595-605. |
[65] |
YIN A, TAYLOR M H. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 2011, 123(9/10):1798-1821.
DOI URL |
[66] | 卢占武, 高锐, KLEMPERER S, 等. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2):210-217. |
[67] |
CHEN L, CAPITANIO F A, LIU L J, et al. Crustal rheology controls on the Tibetan Plateau formation during India-Asia convergence[J]. Nature Communications, 2017, 8(1):1-8.
DOI URL |
[1] | 王水炯, 李曙光. 混合岩研究及地球动力学意义[J]. 地学前缘, 20140101, 21(1): 21-32. |
[2] | 邓琰, 徐玉超, 范晔, 孙贵成, 董泽义, 韩冰. 大地电磁法的应用综述:以川滇地区为例[J]. 地学前缘, 2024, 31(1): 181-200. |
[3] | 单帅强,何登发,张煜颖. 沧县隆起献县变质核杂岩的发育特征及成因模式[J]. 地学前缘, 2019, 26(1): 178-188. |
[4] | 王杰,李献瑞,杜承宸,曾佐勋. 汶川地震前的甲烷浓度异常及大气增温耦合[J]. 地学前缘, 2017, 24(3): 331-340. |
[5] | 徐曦,高顺莉. 下扬子区新生代断陷盆地的构造与形成[J]. 地学前缘, 2015, 22(6): 148-166. |
[6] | 董树文, 李廷栋, 陈宣华, 高锐, 吕庆田, 石耀霖, 黄大年, 杨经绥. 深部探测揭示中国地壳结构、深部过程与成矿作用背景[J]. 地学前缘, 2014, 21(3): 201-225. |
[7] | 王水炯, 李曙光. 混合岩研究及地球动力学意义[J]. 地学前缘, 2014, 21(1): 21-31. |
[8] | 李德威, 郝海健, 刘娇, 周洋, 陈桂凡, 梁桑. 华北热灾害链的结构、成因及强震趋势分析[J]. 地学前缘, 2013, 20(6): 102-108. |
[9] | 尹秉喜, 程建华, 闵刚, 蔡学林, 杨勇. 宁南弧形构造带甘肃靖远—宁夏盐池剖面中上地壳电性结构特征[J]. 地学前缘, 2013, 20(4): 332-339. |
[10] | 李德威, 陈桂凡, 陈继乐, 郝海健. 地震预测:从芦山地震到大陆地震[J]. 地学前缘, 2013, 20(3): 1-10. |
[11] | 漆家福,杨桥. 陆内裂陷盆地构造动力学分析[J]. 地学前缘, 2012, 19(5): 19-26. |
[12] | 申萍,沈远超,刘铁兵. 隐伏矿体定位预测的地球物理地质找矿模型:以地质与EH4双源大地电磁测深技术结合为例[J]. 地学前缘, 2011, 18(3): 284-292. |
[13] | 李德威 夏义平 徐礼贵. 大陆板内盆山耦合及盆山成因——以青藏高原及周边盆地为例[J]. 地学前缘, 2009, 16(3): 110-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||