地学前缘 ›› 2015, Vol. 22 ›› Issue (6): 27-45.DOI: 10.13745/j.esf.2015.06.003

• 前寒武纪地球动力学(I~VI) • 上一篇    下一篇

前寒武纪地球动力学(Ⅲ):前寒武纪地质基本特征

李三忠,戴黎明,张臻   

  1. 1. 中国海洋大学 海洋地球科学学院, 山东 青岛 266100
    2. 海底科学与探测技术教育部重点实验室, 山东 青岛 266100
    3. 香港大学 地球科学系, 中国香港
    4. 西北大学 地质学系, 陕西 西安 710069
  • 收稿日期:2015-05-30 修回日期:2015-07-25 出版日期:2015-11-15 发布日期:2015-11-25
  • 作者简介:李三忠(1968—),男,博士,教授,博士生导师,从事构造地质学及前寒武纪地质学的教学和研究工作。。E-mail:sanzhong@ouc.edu.cn
  • 基金资助:

    国家自然科学基金杰出青年基金项目(41325009);国家自然科学基金重大项目(41190072);泰山学者特聘教授项目

Precambrian geodynamics (Ⅲ): General features of Precambrian geology.

  1. 1. College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
    2. Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Qingdao 266100, China
    3. Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
    4. Department of Geology, Northwest University, Xian 710069, China
  • Received:2015-05-30 Revised:2015-07-25 Online:2015-11-15 Published:2015-11-25

摘要:

地球45.6~5.43亿年处于前寒武纪,具有很多独特的古气候、沉积、岩浆、变质、变形等地质特征,地幔和岩石圈的动力学机制也非常不同。本文通过总结前寒武纪地球动力学进展,系统介绍了前寒武纪地壳和岩石圈物质组成与性质、地壳生长的幕式增生特征、太古宙地幔温度和黏度变化、地壳和岩石圈厚度变化、地壳和岩石圈强度与流变结构演变。地球38~25亿年期间的热流值是现今热流值的2.5~4倍,在热的早期地球期间,下地幔热的积累比上地幔热损失快,导致周期性循环翻转,即上升的下地幔穿过干的橄榄岩固相线,并在大于150 km深处经历大规模熔融。这就是太古宙大陆岩石圈地幔形成的机制和能量背景,但在太古宙以后,因地球的长期冷却,这种机制终结了。太古宙高热流值也说明太古宙热地幔难以支撑较大的地形高差,太古宙岩石圈强度也不大,在重力作用下会发生快速地形响应。但是,随着巨型基性岩墙群(大约2.75和2.45 Ga)首次出现以及表壳岩系的出现,又意味着太古宙晚期地壳逐步足够刚性,允许熔体上升穿过地壳并冷却固化。前寒武纪重大地质事件的根本原因都是因为地球热振荡衰减的结果,前寒武纪地壳生长(增生)、超大陆形成、岩浆作用、成矿作用等都是不等周期、非线性的幕式演化,从TTG大规模短时间集中式形成,表明早期大陆生长模式可能以垂向增生为主。最后,探讨了冥古宙特征,大陆起源、生长和保存机制,前寒武纪超大陆重建与机制和早期地球环境生命协同演化等前寒武纪关键科学问题和前沿。

关键词: 前寒武纪, 大陆生长, TTG, 绿岩带, 基性岩墙群, 雪球地球

Abstract:

During the 4.560.543 Ga Precambrian period, it has a lot of unique geological features of sedimentation, magmatism, metamorphism, deformation, mantle and lithospheric geodynamics. In order to understand the Precambrian geodynamics, this paper introduces some scientific advances on the composition and properties of the Precambrian crust and lithosphere, and their episodic growth, variation of Archean mantle temperature and viscosity, thickness, strength and rheological structure evolution of crust and lithosphere. The heat flow value of the Earth during 3.82.5 Ga is 2.54 times tham the presentday heat flow value. During the heat early Earth period, lower mantle heat accumulation is larger than the upper mantle heat loss, resulting in cyclic mantle overturn. Coevally the rising lower mantle went through the dry peridotite solidus, resulting in largescale melting at more than 150 km depth. This is the formation mechanism and energy background of Archean continental lithospheric mantle, but due to the Earths longterm cooling, this mechanism terminated after the Archean. The Archean high heat flow values caused the heat Archean mantle difficult to support the large terrain elevation; the Archean lithospheric strength is small, and fast terrain responses happened under the action of gravity. However, the giant mafic dyke swarms first appeared (at about 2.75 and 2.45 Ga), and supracrustal rocks occurred; the late Archean crust had gradually enough rigidity to allow melts ascending through the crust which is cooled and solidified. The fundamental cause of the major geological events in the Precambrian period is the result of the attenuation and oscillations of the Earths heat;all the Precambrian crustal growth (accretion), the formation of the supercontinent, the magmatism and the mineralization are characterized by different periods and nonlinear evolution. The formation of largescale TTG in a short time implies that they were possibly derived from vertical accretion. Finally this paper discusses the Hadean characteristics, origin, growth and preservation mechanisms of the continental crust, supercontinent reconstruction and mechanism, and coevolution of early life and environment, and other key scientific problems.

Key words: Precmabrian, continental crsut growth, TTG, greenstone belt, mafic dyke swarm, snowball Earth

中图分类号: