大数据挖掘与机器学习算法应用已成为成矿预测研究的重要趋势,但如何使非结构化地质数据进行机器可读表达成为需要克服的难点。本研究针对粤西庞西垌矿集区开展地层、岩性、断裂等非结构化地质信息面向机器可读的转换处理,并进而应用机器学习算法对水系沉积物地球化学测试数据和构造、地层等综合地质信息进行挖掘,提取致矿异常特征,最终实现智能圈定致矿异常找矿靶区。独热编码算法与空间加权主成分分析中的权重变量方法组合应用,实现了地层、岩性和断裂构造等非结构化地质信息的结构化转化,并最大限度地保留其所包含的地质信息。单分类支持向量机和自编码网络异常检测算法的应用,解决了研究区已知矿点与非矿点数据不平衡问题。对多源地质数据的集成和综合生成的预测结果与研究区铅锌矿床的空间分布和实际的地质构造情况相对一致,表明上述算法能够有效识别找矿潜力区并寻找潜在的矿床。与传统的勘查地球化学方法相比,本研究中的分析方法能够处理和集成多源的地质致矿信息,可应用于尚未发现矿床的找矿潜力区,提高发现矿床的可能性和找矿工作的效率。
大数据时代的到来,为卡林型金矿床开拓了新的找矿思路。本研究应用关联规则算法,挖掘滇黔桂“金三角”卡林型金矿床内微量元素与金矿化海量数据之间的关联性,提取元素异常组合,分析控制因素,定量构建找矿标志。结果显示矿床内元素异常组合分为4组:(1)强正关联显著富集元素(As、Sb、Hg、Tl、Ag、W和Rb),显示硫化和黏土化作用;(2)较强正关联略富集元素I(Zr、Th、Ta、Nb和Hf)和强负关联强迁出元素(Li和Sr),显示去碳酸盐化作用;(3)较强正关联略富集元素II(Sn、Zn、Ni、V、Co和Cu),显示硫化作用;(4)弱关联基本无富集元素(Cd、Pb、Ba、Bi、U和Mo),与成矿无显著关联。从大数据角度获取的元素异常组合,与学界关于Au主要在去碳酸盐化、硫化和黏土化条件下形成的认识一致。通过关联规则算法分别对与硫化和去碳酸盐化相关的元素建立定量找矿标志。硫化找矿标志:样品中As、Hg、Sb、Tl、W、Ag和Rb等元素内中高含量项数≥1、≥2、≥3、≥4和≥5时,对应的Au矿化分别为≥4.5×10-9、≥47.0×10-9、≥150×10-9、≥500×10-9和≥1 000×10-9;样品内高含量项数≥1、≥2和≥3时,对应的Au矿化分别为≥150×10-9、≥500×10-9和≥1 000×10-9;找矿过程中两组指标配合使用,确保不漏矿,高效圈矿。去碳酸盐化找矿标志:样品中Zr、Th、Ta、Nb和Hf含量任意两项出现正异常,认为样品经历过去碳酸盐化作用。定量识别的硫化和去碳酸盐化找矿标志可望在卡林型金矿找矿预测中发挥重要作用。本研究基于关联规则算法分析矿床元素富集规律、控制因素和定量构建找矿标志的方法,也可为其他类型矿床开展类似研究提供新思路。
为研究地质学领域的大数据和人工智能研究现状、热点和前沿,在中国知网(CNKI)核心期刊和Web of Science(WoS)核心数据库收集了2000—2022年相关中文文献3 600篇、英文文献1 803篇,利用社区结构分析软件CiteSpace,从合作作者、研究国家、研究机构、关键词聚类、关键词时空分布图谱等进行可视化分析,并统计了2021—2022年间,地质学领域国际顶级期刊(综合影响因子10以上)的文献进行前沿分析。分析结果表明,近10年内该研究领域全球累计发文量激增,以中国为代表的亚洲国家和以美国为代表的欧美国家研究为主,双方累计发文量相差不大,论文中介中心性欧美国家普遍较高。我国研究机构之间的交流合作居多,与国外的研究机构交流合作较少,国外研究机构则与之相反。该领域以应用机器学习类方法、知识图谱构建等,在地质灾害防治、地震解释、石油与天然气勘查、固体矿产资源预测等方向进行的科学研究为研究热点,以深度学习、集成学习、智能平台搭建等为手段的地球演化过程中的重大地质事件研究、全球性气候变化、极地及海洋地质研究、数字地质建模及定量分析、地震预报、地灾易发性精准评估等为研究前沿。