深度学习与图像识别 栏目所有文章列表
(按年度、期号倒序)
    一年内发表的文章 |  两年内 |  三年内 |  全部
Please wait a minute...
选择: 显示/隐藏图片
1. 矿物组分识别与智能解释在不同岩性之间的信息共享与迁移学习
刘烨, 韩雨伯, 朱文瑞
地学前缘    2024, 31 (4): 95-111.   DOI: 10.13745/j.esf.sf.2024.5.8
摘要762)   HTML6)    PDF(pc) (13833KB)(196)    收藏

在地球科学领域,岩石微观观测数据的采集过程繁琐且效率低下,这不仅增加了研究成本,降低了可靠性,同时也限制了数据的开源共享。此外,由于岩性的多样性和观测手段的差异,单一数据集的规模通常较小,这对于依赖大规模数据集的深度学习框架而言是一大挑战。为此,本研究探索迁移学习如何促进不同岩性间的信息共享,并通过此机制提高矿物组分识别与智能解释任务的模型性能。通过采集不同区域、岩性、矿物组分和偏光模式下的铸体薄片样本,本文深入研究了深度学习模型在不同观测对象和手段下的迁移学习机制,并聚焦于探索地质信息的深层表征。研究成果不但揭示了迁移学习在促进地质学领域信息共享与模型性能提升中的关键作用,还为自动化和智能化地质认识融合奠定了基础。实验结果显示,通过迁移学习,本文模型在智能解释任务中的准确率显著提高,从53.3%提高至98.73%,而在矿物组分识别任务中,准确率也实现了近10%的提升。这些成果证明了迁移学习在地质学领域内解决实际问题和提高模型泛化能力、性能和稳定性方面的巨大潜力。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
2. 基于数据增强和集成学习的矿物图像识别
王琳, 季晓慧, 杨眉, 何明跃, 张招崇, 曾姗, 王玉柱
地学前缘    2024, 31 (4): 87-94.   DOI: 10.13745/j.esf.sf.2024.5.6
摘要703)   HTML16)    PDF(pc) (3258KB)(726)    收藏

矿物识别是地质学研究的一个重要部分,对于资源勘探、岩石分类和地质环境监测都有着重要的意义。然而,传统方法通常依赖人的经验进行主观判断,并且效率低下。近年来,已有许多研究将深度学习的图像分类技术应用于矿物识别,以客观快速地识别矿物,这些研究都取得了一定的成果,但可识别矿物种类有限且精度需要进一步提升。为此本文首先解决了矿物数据集图像数据样本分布不平衡问题,对数据集中矿物图像较少的11个矿物类别采用DCGAN生成矿物图像进行数据增强,对比选择效果更好的方案对数据集进行扩充。其次,为了得到更可靠、精确度更高的识别模型,将ImageNet上表现较好的ResNet、RegNet、EfficientNet和Vision Transformer模型迁移到本文使用的矿物数据集上。针对训练好的基模型排列组合得到11个子模型,分别使用平均软投票法和加权软投票法两种方法进行集成,得到22个集成模型并对其训练得到识别结果,对比22个集成模型的结果选择出精度最高的集成模型。实验结果表明:使用DCGAN进行数据增强,在不同的模型上平均提升了3.12%的准确率,充分证明了DCGAN数据增强的有效性;在所有集成模型中,使用加权软投票法的模型表现较好,其中精度最高的是利用4个基分类模型进行加权软投票得到的集成模型,在扩充后的36种常见矿物数据集上达到了87.47%的准确率。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
3. 基于渐进多粒度训练深度学习的矿物图像识别
万成舟, 季晓慧, 杨眉, 何明跃, 张招崇, 曾姗, 王玉柱
地学前缘    2024, 31 (4): 112-118.   DOI: 10.13745/j.esf.sf.2024.5.1
摘要591)   HTML10)    PDF(pc) (2344KB)(339)    收藏

近年来,随着深度学习在地学领域中的应用,矿物图像识别变得越来越重要。虽然已经有研究将深度学习应用于矿物图像识别,并取得了一定的成果,但在大规模矿物数据集上的识别准确率仍然有待进一步提高。不同矿物之间可能存在细微的形态、纹理和颜色差异,符合细粒度识别算法特征,但以往的研究中很少有人采用细粒度方法进行矿物识别。所以本文提出了一种基于Next-ViT模型的细粒度矿物识别方法,通过引入渐进式多粒度训练拼图技术,实现对矿物图像的精确分类。首先采用Next-ViT模型作为特征提取器,该模型结合了Transformer结构和卷积神经网络的优势,能够提取到丰富的图像特征;接下来利用随机拼图生成器创建不同粒度级别的矿物拼图,这些拼图包含从细节到整体的多种信息。训练过程中采用渐进式多粒度训练策略,在训练的早期阶段,模型主要关注细粒度的特征,通过学习拼图中的细节信息来区分不同的矿物,随着训练的深入,模型逐渐将注意力转移到更大粒度级别的特征上,学习更加抽象和全局的信息。通过这种方式,模型能够充分利用不同粒度级别的信息,提高矿物识别的准确性。实验结果表明,该模型在常见的36种矿物数据集上取得了86.5%的准确率,有效地提高了矿物识别的准确率。这表明,细粒度识别方法对于矿物识别是有效的。

图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0