

地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 350-366.DOI: 10.13745/j.esf.sf.2025.8.67
收稿日期:2025-05-20
修回日期:2025-06-13
出版日期:2025-11-25
发布日期:2025-11-12
通信作者:
于炳松
作者简介:阮 壮(1983—),男,副教授,博士生导师,主要从事沉积学研究。E-mail: ruanz0103@cugb.edu.cn
基金资助:
RUAN Zhuang1(
), WANG Yueyun2, CHANG Qiuhong1, YU Bingsong1,*(
)
Received:2025-05-20
Revised:2025-06-13
Online:2025-11-25
Published:2025-11-12
Contact:
YU Bingsong
摘要:
沉积层序的形成受控于构造活动、海(湖)平面变化及气候演化等多种地质过程,其时空结构复杂且具有多尺度性。传统方法难以揭示其内在规律,而分形理论为研究沉积层序提供了新的视角。本研究基于分形理论,以济阳坳陷沙河街组为例,系统分析了沉积层序的时空分形结构及其地质意义。首先,利用Hurst指数量化沉积层序的时间分形特征,并探讨其在沉积环境演化过程中的应用。其次,通过功率谱分析,揭示储层沉积系统的自组织临界性,并提出基于滤波方法的长程时-空关联结构提取技术。最后,研究了孔隙结构的分形特征,并量化评价其对储层渗透性的影响。研究结果表明,Hurst指数可用于定量刻画沉积环境的长期演化趋势,储层自组织临界性可用于优化储层参数分析,而分形理论在储层孔喉结构评价中具有重要应用价值。本研究不仅深化了对沉积层序复杂性的理解,也为油气资源的勘探和储层评价提供了新的理论支持和方法。
中图分类号:
阮壮, 王玥蕴, 常秋红, 于炳松. 沉积层序中的时空分形结构及其地质意义[J]. 地学前缘, 2025, 32(6): 350-366.
RUAN Zhuang, WANG Yueyun, CHANG Qiuhong, YU Bingsong. Spatio-temporal fractal structures in sedimentary sequences and their geological significance[J]. Earth Science Frontiers, 2025, 32(6): 350-366.
图3 Hurst指数与随机振荡频率和演化方向性的拟合关系图 a—TOC序列的Hurst指数与随机振荡频率的拟合关系;b—TOC序列的Hurst指数与演化方向性的拟合关系;c—GR测井序列的Hurst指数与随机震荡频率的拟合关系;d—GR测井序列的Hurst指数与演化方向性的拟合关系。
Fig.3 Relationship diagram among Hurst index, FST and D
图5 东营凹陷3口取心井储层参数的功率谱特征 a—FY1井TOC的功率谱;b—FY1井TOC的功率谱双对数图;c—FY1井孔隙度的功率谱;d—FY1井孔隙度的功率谱双对数图;e—NY1井TOC的功率谱;f—NY1井TOC的功率谱双对数图;g—NY1井孔隙度的功率谱;h—NY1井孔隙度的功率谱双对数图;i—LY1井TOC的功率谱;j—LY1井TOC的功率谱双对数图;k—LY1井孔隙度的功率谱;l—LY1井孔隙度的功率谱双对数图。
Fig.5 Power spectrum characteristics of reservoir parameters of 3 core wells in Dongying Depression
图7 东营凹陷3口取心井储层参数功率谱曲线函数拟合与曲率 a—FY1井TOC的功率谱;b—FY1井TOC拟合曲线曲率;c—FY1井孔隙度的功率谱;d—FY1井孔隙度拟合曲线曲率;e—NY1井TOC的功率谱;f—NY1井TOC的拟合曲线曲率;g—NY1井孔隙度的功率谱;h—NY1井孔隙度拟合曲线曲率;i—LY1井TOC的功率谱;j—LY1井TOC拟合曲线曲率;k—LY1井孔隙度的功率谱;l—LY1井孔隙度拟合曲线曲率。
Fig.7 Function fitting and curvature of reservoir parameter power spectrum curve of 3 core wells in Dongying Depression
图8 东营凹陷3口取心井储层参数滤波图 a—FY1井TOC滤波图;b—NY1井TOC滤波图;c—LY1井TOC滤波图;d—FY1井孔隙度滤波图;e—NY1井孔隙度滤波图;f—LY1井孔隙度滤波图。
Fig.8 Filter map of reservoir parameters of 3 core wells in Dongying Depression
图9 东营凹陷3口取心井储层参数与S1相关关系图 a—滤波前TOC vs S1;b—滤波前孔隙度 vs S1;c—滤波后TOC vs S1;d—滤波后孔隙度 vs S1。
Fig.9 Correlation diagram between reservoir parameters and S1 of 3 core wells in Dongying Depression
| [1] | SCHLAGER W. Fractal nature of stratigraphic sequences[J]. Geology, 2004, 32(3): 185-188. |
| [2] | MANDELBROT B B. The fractal geometry of nature[M]. San Francisco: Freeman, 1982. |
| [3] | TURCOTTE D L. Fractals, chaos, self-organized criticality and tectonics[J]. Terra Nova, 1992, 4(1): 4-12. |
| [4] | SYLVESTER Z. Turbidite bed thickness distributions: methods and pitfalls of analysis and modelling[J]. Sedimentology, 2007, 54(4): 847-870. |
| [5] | MANDELBROT B B. Multifractal measures, especially for the geophysicist[J]. Pure and Applied Geophysics, 1989, 131(1): 5-42. |
| [6] | MANDELBROT B B. Multifractals and 1/f noise: wild self-affinity in physics (1963-1976)[M]. New York: Springer, 2013. |
| [7] | 於崇文. 地质作用的自组织临界过程动力学: 地质系统在混沌边缘分形生长[J]. 地学前缘, 2000 (1): 13-42. |
| [8] | KROHN C E. Fractal measurements of sandstones, shales, and carbonates[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B4): 3297-3305. |
| [9] | TYLER S W, WHEATCRAFT S W. Fractal processes in soil water retention[J]. Water Resources Research, 1990, 26(5): 1047-1054. |
| [10] | 贺承祖, 华明琪. 储层孔隙结构的分形几何描述[J]. 石油与天然气地质, 1998, 19(1): 15-23. |
| [11] | YANG F, NING Z, LIU H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 2014, 115: 378-384. |
| [12] | LIU X, XIONG J, LIANG L. Investigation of pore structure and fractal characteristics of organic-rich Yanchang Formation shale in central China by nitrogen adsorption/desorption analysis[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 62-72. |
| [13] | FU C, LI S L, LI S L, et al. Genetic types of mudstone in a closed-lacustrine to open-marine transition and their organic matter accumulation patterns: a case study of the paleocene source rocks in the East China Sea Basin[J]. Journal of Petroleum Scienced and Engineering, 2022, 208: 19. |
| [14] | 李澎, 陈浩然, 王阳, 等. 华北盆地开平向斜山西组海陆过渡相页岩孔隙分形特征[J/OL]. 天然气地球科学, 1-20[2025-05-15]. DOI: 10.11764/j.issn.1672-1926.2025.01.009. |
| [15] | BISCHOFF J L, FITZPATRICK J A, LEON L, et al. Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los Huesos chamber, Cueva Mayor of the Sierra de Atapuerca, Burgos, Spain[J]. Journal of Human Evolution, 1997, 33(2/3): 129-154. |
| [16] | BOSTANMANESHRAD F, PARTANI S, NOORI R, et al. Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin[J]. Science of the Total Environment, 2018, 639: 1588-1600. |
| [17] | CANFIELD D E, NGOMBI-PEMBA L, HAMMARLUND E U, et al. Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 16736-16741. |
| [18] | FROST S R. Fossil Cercopithecidae from the Middle Pleistocene Dawaitoli Formation, Middle Awash Valley, Afar region, Ethiopia[J]. American Journal of Physical Anthropology, 2007, 134(4): 460-471. |
| [19] | GUGERLI F, ALVAREZ N, INNER W. A deep dig-hindsight on Holocene vegetation composition from ancient environmental DNA[J]. Molecular Ecology, 2013, 22(13): 3433-3436. |
| [20] | PETERS S E, FOOTE M. Determinants of extinction in the fossil record[J]. Nature, 2002, 416(6879): 420-424. |
| [21] | POTTER-MCINTYRE S L, WILLIAMS J, PHILLIPS-LANDER C, et al. Taphonomy of microbial biosignatures in Spring Deposits: a comparison of Modern, Quaternary, and Jurassic examples[J]. Astrobiology, 2017, 17(3): 216-230. |
| [22] | SCHWING P T, CHANTON J P, ROMERO I C, et al. Tracing the incorporation of carbon into benthic foraminiferal calcite following the Deepwater Horizon event[J]. Environmental Pollution, 2018, 237: 424-429. |
| [23] | VON GUNTEN L, D’ANDREA W J, BRADLEY R S, et al. Proxy-to-proxy calibration: increasing the temporal resolution of quantitative climate reconstructions[J]. Scientific Reports, 2012, 2: 609-609. |
| [24] | ELIAZAR I I, SHLESINGER M F. Fractional motions[J]. Physics Reports: Review Section of Physics Letters, 2013, 527(2): 101-129. |
| [25] | WATKINS N W. Mandelbrot’s stochastic time series models[J]. Earth and Space Science, 2019, 6(11): 2044-2056. |
| [26] | ZHAO P, WANG X, CAI J, et al. Multifractal analysis of pore structure of Middle Bakken Formation using low temperature N-2 adsorption and NMR measurements[J]. Journal of Petroleum Science and Engineering, 2019, 176: 312-320. |
| [27] | ZHANG X, HAN H, PENG J, et al. Multifractal analysis of pore structure and evaluation of deep-buried Cambrian dolomite reservoir with image processing: a case from Tarim Basin, NW China[J]. Geofluids, 2020, 7131573. DOI: 10.1155/2020/7131573. |
| [28] | CHEN C S, HISCOTT R N. Statistical analysis of facies clustering in submarine-fan turbidite successions[J]. Journal of Sedimentary Research, 1999, 69(2): 505-517. |
| [29] | WOOD R, LIU A G, BOWYER F, et al. Integrated records of environmental change and evolution challenge the Cambrian Explosion[J]. Nature Ecology & Evolution, 2019, 3(4): 528-538. |
| [30] | BOWYER F T, ZHURAVLEV A Y, WOOD R, et al. Calibrating the temporal and spatial dynamics of the Ediacaran-Cambrian radiation of animals[J]. Earth-Science Reviews, 2022, 225: 103913. |
| [31] | IMASHEV S, MISHCHENKO M, CHESHEV M. Fractal analysis of seismoacoustic signals of near-surface sedimentary rocks in Kamchatka[J]. Geofizika, 2019, 36(2): 153-169. |
| [32] | GACI S, ZAOURAR N. Heterogeneities characterization from velocity logs using multifractional Brownian motion[J]. Arabian Journal of Geosciences, 2011, 4(3/4): 535-541. |
| [33] | BALA M, JARZYNA J, MORTIMER Z. Statistical analysis of petrophysical parameters of Middle Miocene rocks from the Polish Carpathian Foredeep[J]. Geological Quarterly, 2012, 56(4): 665-679. |
| [34] | HURST H E. Long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineers, 1951, 116(1): 770-799. |
| [35] | LEARY P C, AL-KINDY F. Power-law scaling of spatially correlated porosity and log(permeability) sequences from north-central North Sea Brae oilfield well core[J]. Geophysical Journal International, 2002, 148(3): 426-442. |
| [36] | BAILEY R J. Strata and time: probing the gaps in our understanding[J]. Geological Society, London, Special Publication, 2016, 51(6): 966-978. |
| [37] | KOETELESOVA S. Facies clustering in deep-water successions of the Magura zone of the Outer Western Carpathians: implications for interpretation of submarine-fan environments[J]. Facies, 2012, 58(2): 217-227. |
| [38] | MUKHOPADHYAY B, CHAKRABORTY P P, PAUL S. Facies clustering in turbidite successions: case study from Andaman Flysch Group, Andaman Islands, India[J]. Gondwana Research, 2003, 6(4): 918-925. |
| [39] | PANTOPOULOS G, VAKALAS I, MARAVELIS A, et al. Statistical analysis of turbidite bed thickness patterns from the Alpine fold and thrust belt of western and southeastern Greece[J]. Sedimentary Geology., 2013, 294: 37-57. |
| [40] | FELLETTI F, BERSEZIO R. Validation of Hurst statistics: a predictive tool to discriminate turbiditic sub-environments in a confined basin[J]. Petroleum Geoscience, 2010, 16(4): 401-412. |
| [41] | HOU P, JOBE Z R, WOOD L J. Statistical characterization of a confined submarine fan system: the Pennsylvanian Lower Atoka Formation, Ouachita Mountains, USA[J]. Sedimentology, 2022, 69(2): 775-797. |
| [42] | LONGHITANO S G, NEMEC W. Statistical analysis of bed-thickness variation in a Tortonian succession of biocalcarenitic tidal dunes, Amantea Basin, Calabria, southern Italy[J]. Sedimentary Geology, 2005, 179(3/4): 195-224. |
| [43] | KUAI K Z, SAI C W. Identification of varying time scales in sediment transport using the Hilbert-Huang Transform method[J]. Journal of Hydrology, 2012, 420: 245-254. |
| [44] | PLOTNICK R E, RESTEGAARD K L. Fractals in petroleum geology and Earth processes[M]. New York: Springer, 1995: 73-96. |
| [45] | MARIANI M C, KUBIN W, ASANTE P K, et al. Relationship between continuum of Hurst exponents of noise-like time series and the Cantor set[J]. Entropy, 2021, 23(11). DOI: 10.3390/e23111505. |
| [46] | DIEM DANG H, AGARWAL R P. Controllability for impulsive neutral stochastic delay partial differential equations driven by fBm and Lévy noise[J]. Stochastics and Dynamics, 2021, 21(2): 2150013. |
| [47] | JOELSON M, GOLDER J, BELTRAME P, et al. On fractal nature of groundwater level fluctuations due to rainfall process[J]. Chaos Solitons & Fractals, 2016, 82: 103-115. |
| [48] | WITT A, MALAMUD B D. Quantification of long-range persistence in geophysical time series: conventional and benchmark-based improvement techniques[J]. Surveys in Geophysics, 2013, 34(5): 541-651. |
| [49] | BECKER M, KARPYTCHEV M, LENNARTZ-SASSINEK S. Long-term sea level trends: Natural or anthropogenic?[J]. Geophysical Research Letters, 2014, 41(15): 5571-5580. |
| [50] | CAEL B B, HEATHCOTE A J, SEEKELL D A. The volume and mean depth of Earth’s lakes[J]. Geophysical Research Letters, 2017, 44(1): 209-218. |
| [51] | CAMPBELL B A, GHENT R R, SHEPARD M K. Limits on inference of Mars small-scale topography from MOLA data[J]. Geophysical Research Letters, 2003, 30(3): 1115. |
| [52] | CERSOSIMO D O, WANLISS J A. Initial studies of high latitude magnetic field data during different magnetospheric conditions[J]. Earth Planets and Space, 2007, 59(1): 39-43. |
| [53] | LEE K C. Characterization of turbulence stability through the identification of multifractional Brownian motions[J]. Nonlinear Process in Geophysics., 2013, 20(1): 97-106. |
| [54] | JORDAN T M, COOPER M A, SCHROEDER D M, et al. Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland[J]. Cryosphere, 2017, 11(3): 1247-1264. |
| [55] | LENNARTZ S, UNDE A. Trend evaluation in records with long-term memory: application to global warming[J]. Geophysical Research Letters, 2009, 36: L16706. |
| [56] | MA J, SUN Y, CHU C. Chaotic characters of the Yellow River Basin based on the sediment time series: an attempt to integrated research in geography[J]. Journal of Geographical Sciences, 2010, 20(2): 219-230. |
| [57] | MASSAH M, KANTZ H. Confidence intervals for time averages in the presence of long-range correlations: a case study on Earth surface temperature anomalies[J]. Geophysical Research Letters, 2016, 43(17): 9243-9249. |
| [58] | ZHOU J, LU T. Relative contributions of climate change and human activities on vegetation productivity variation in national nature reserves on the Qinghai-Tibetan Plateau[J]. Remote Sensing, 2022, 14(18): 4626 |
| [59] | LI H, XU Q, HE Y, et al. Temporal detection of sharp landslide deformation with ensemble-based LSTM-RNNs and Hurst exponent[J]. Geomatics Natural Hazards & Risk, 2021, 12(1): 3089-3113. |
| [60] | YANG D, ZHANG C, LIU Y. Multifractal characteristic analysis of near-fault earthquake ground motions[J]. Soil Dynamics and Earthquake Engineering, 2015, 72: 12-23. |
| [61] | PLOTNICK R E, PRESTEGAARD K L. Fractal and multifractal models and methods in stratigraphy[M]. New York: Springer, 1995. |
| [62] | MARSAN D, BEAN C J. Multiscaling nature of sonic velocities and lithology in the upper crystalline crust: evidence from the KTB Main Borehole[J]. Geophysical Research Letters, 1999, 26(2): 275-278. |
| [63] | HERNANDEZ-MARTINEZ E, PEREZ-MUNOZ T, VELASCO-HERNANDEZ J X, et al. Facies Recognition using multifractal Hurst analysis: applications to well-log data[J]. Mathematical Geosciences, 2013, 45(4): 471-486. |
| [64] | MANDELBROT B B, WALLIS J R. Some long-run properties of geophysical records[J]. Water Resources Research, 1969, 5(2): 321-340. |
| [65] | CATUNEANU O, KHALIFA M A, WANAS H A. Sequence stratigraphy of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt[J]. Sedimentary Geology, 2006, 190(1/2/3/4): 121-137. |
| [66] | FELLETTI F. International workshop on confined turbidite systems[M]. London: Geological Society Publishing House, 2004: 285-305. |
| [67] | WILMSEN M, FRANZ T, FURSICH S K, et al. Facies analysis of a large-scale Jurassic shelf-lagoon: the Kamar-e-Mehdi Formation of east-central Iran[J]. Facies, 2010, 56(1): 59. |
| [68] | HOU P F, WOOD L J, JOBE Z R. Tectonic-sedimentary interplay of a confined deepwater system in a foreland basin setting: the Pennsylvanian Lower Atoka Formation, Ouachita Mountains, USA[J]. Journal of Sedimentary Research, 2021, 91(7): 683-709. |
| [69] | SOUDKHAH M, PAK R Y S. Wave absorbing-boundary method in seismic centrifuge simulation of vertical free-field ground motion[J]. Computers and Geotechnics, 2012, 43: 155-164. |
| [70] | CHEN J, JIANG Z, PANG H, et al. Lateral migration of petroleum in the Jurassic Toutunhe Formation in the Fudong Slope, Junggar Basin, China[J]. Resource Geology, 2014, 64(1): 35-46. |
| [71] | WANG Y, RUAN Z, YU B, et al. Statistical analysis of the Hurst index indicating sedimentary processes’ evolution trend in the deep lacustrine mudrock sequences: a case study of the Jiyang Depression, Bohai Bay Basin, Eastern China[J]. Sedimentary Geology, 2024, 470: 106712. |
| [72] | CAO T, YAO W, LI Z, et al. Geochemical characteristics of lacustrine shale and enrichment mechanism of organic matter in Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 558-564. |
| [73] | YU L, PENG J, XU T, et al. A study on astronomical cycle identification and environmental response characteristics of lacustrine deep-water fine-grained sedimentary rocks: a case study of the Lower Submember of Member 3 of Shahejie Formation in Well Fanye-1 of Dongying Sag, Bohai Bay Basin, China[J]. Geofluids, 2021, 5595829. DOI: 10.1155/2021/5595829. |
| [74] | SHI J, JIN Z, LIU Q, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40(6): 1205-1214. |
| [75] | SUN S, LIU H, CAO Y, et al. Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its significance to shale oil: a case study of the upper Es4 member of well NY1 in Dongying sag[J]. Journal of China University of Mining & Technology, 2017, 46(4): 846-858. |
| [76] | CASTLE J W, MOLZ F J, LU S L, et al. Sedimentology and fractal-based analysis of permeability data, John Henry member, Straight Cliffs Formation (Upper Cretaceous), Utah, USA[J]. Journal of Sedimentary Research, 2004, 74(2): 270-284. |
| [77] | BOATENG C D, FU L Y. Analysis of reservoir heterogeneities and depositional environments: a new method[J]. Exploration Geophysics, 2018, 49(6): 868-880. |
| [78] | BAK P. How nature works: the science of self-organized criticality[M]. New York: Copernicus, 1996. |
| [79] | 於崇文. 地质系统的复杂性(上、下册)[M]. 北京: 地质出版社, 2003. |
| [80] | DINEEN D D, HANDLEY W J. Analytic approximations for the primordial power spectrum with israel junction conditions[J]. Physical Review D, 2024, 109(8): 083513. |
| [81] | RUSECKAS J, KAZAKEVIČI R, KAULAKYS B. Coupled nonlinear stochastic differential equations generating arbitrary distributed observable with 1/f noise[J]. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016(4): 043209. |
| [82] | RUSECKAS J, KAULAKYS B. 1/f noise from nonlinear stochastic differential equations[J]. Physical Review E, 2010, 81(3): 031105. |
| [83] | 於崇文, 岑况, 龚庆杰, 等. 湖南郴州柿竹园超大型钨多金属矿床的成矿复杂性研究[J]. 地学前缘, 2003 (3): 15-39. |
| [84] | TON R, DAFFERTSHOFER A. Model selection for identifying power-law scaling[J]. NeuroImage, 2016, 136: 215-226. |
| [85] | KNOWLES S F, MACKAY E K R, THORNEYWORK A L. Interpreting the power spectral density of a fluctuating colloidal current[J]. Journal of Chemical Physics, 2024, 161(14): 144905. |
| [86] | KHAJEHDEHI O, KARIMI K, DAVIDSEN J. The Effect of correlated permeability on fluid-induced seismicity[J]. Geophysical Research Letters, 2022, 49(4): e2021GL095199. |
| [87] | LEARY P C, AL-KINDY F. Power-law scaling of spatially correlated porosity and log(permeability) sequences from north-central North Sea Brae oilfield well core: power-law scaling of porosity and permeability core sequences[J]. Geophysical Journal International, 2002, 148(3): 426-442. |
| [88] | ELLWOOD B B, TOMKIN J H, FEBO L A, et al. Time series analysis of magnetic susceptibility variations in deep marine sedimentary rocks: a test using the Upper Danian-Lower Selandian proposed GSSP, Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261(3/4): 270-279. |
| [89] | 李凤杰, 赵俊兴. 基于Matlab的测井曲线频谱分析及其在地质研究中的应用: 以川东北地区二叠系长兴组为例[J]. 天然气地球科学, 2007, 18(4): 531-534. |
| [90] | KODAMA K P, HINNOV L A. Rock magnetic cyclostratigraphy[M]. New Jersey: Wiley-Blackwell, 2015. |
| [91] | 闫建平, 言语, 彭军, 等. 湖相泥页岩天文地层旋回测井识别在沾化凹陷沙三下亚段的应用[J]. 测井技术, 2017, 41(6): 701-707. |
| [92] | 刘苏峡, 莫兴国, 夏军, 等. 用斜率和曲率湿周法推求河道最小生态需水量的比较[J]. 地理学报, 2006(3): 273-281. |
| [93] | 杨尚瑾, 武守远, 戴朝波. 基于电流波形曲率的短路故障快速识别方法[J]. 电网技术, 2013, 37(2): 551-556. |
| [94] | CHEN Z, HU K, CARPENA P, et al. Effect of nonlinear filters on detrended fluctuation analysis[J]. Physical Review E, 2005, 71(1): 011104. |
| [95] | FAN Q, LI D, LING G, et al. Effect of filters on multivariate multifractal detrended fluctuation analysis[J]. Fractals, 2021, 29(3): 2150047. |
| [96] | 吴胜阳. 椭圆函数低通滤波器的设计[J]. 新乡学院学报(自然科学版), 2008, 25(4): 18-20. |
| [97] | 李婵娟, 傅世强, 孙爽. 一种椭圆函数微带低通滤波器的设计与实现[J]. 电子科技, 2015, 28(11): 69-70, 74. |
| [98] | LI M, HINNOV L, KUMP L. Acycle: time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22. |
| [99] | ZHANG B, YAO S, HU W, et al. Hydrocarbon source rock characteristics and shale gas potential of Permian marine shales in the Lower Yangtze region of South China[J]. AAPG Bulletin, 2024, 108(4): 719-749. |
| [100] | ZOU C, PAN S, HORSFIELD B, et al. Oil retention and intrasource migration in the organic-rich lacustrine Chang 7 shale of the Upper Triassic Yanchang Formation, Ordos Basin, Central China[J]. AAPG Bulletin, 2019, 103(11): 2627-2663. |
| [101] | 赵文智, 朱如凯, 刘伟, 等. 我国陆相中高熟页岩油富集条件与分布特征[J]. 地学前缘, 2023, 30(1): 116-127. |
| [102] | HE Q, DONG T, HE S. Pore characteristics and evolution mechanisms of paralic shales from the Upper Permian Longtan Formation, southwestern China[J]. AAPG Bulletin, 2024, 108(6): 1033-1067. |
| [103] | LV J, JIANG F, HU T, et al. Control of complex lithofacies on the shale oil potential in ancient alkaline lacustrine basins: the Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Geoenergy Science and Engineering, 2023, 224: 211501. |
| [104] | 韩文中, 赵贤正, 金凤鸣, 等. 渤海湾盆地沧东凹陷孔二段湖相页岩油甜点评价与勘探实践[J]. 石油勘探与开发, 2021, 48(4): 777-786. |
| [105] | ADEYILOLA A, ZAKHAROVA N, LIU K, et al. Porosity distribution in the Devonian Antrim Shale: controlling factors and implications for gas sorption[J]. International Journal of Coal Geology, 2023, 272: 104251. |
| [106] | 赵贤正, 蒲秀刚, 金凤鸣, 等. 黄骅坳陷页岩型页岩油富集规律及勘探有利区[J]. 石油学报, 2023, 44(1): 158-175. |
| [107] | KATZ A J, THOMPSON A H. Fractal sandstone pores: implications for conductivity and pore formation[J]. Physical Review Letters, 1985, 54(12): 1325. |
| [108] | HUAN D D, AGARWAL R P. Controllability for impulsive neutral stochastic delay partial differential equations driven by fBm and Levy noise[J]. Stochastics & Dynamics, 2021, 21(2): 24. |
| [109] | JOELSON M, GOLDER J, BELTRAME P, et al. On fractal nature of groundwater level fluctuations due to rainfall process[J]. Chaos Solitons & Fractals, 2016, 82: 103-115. |
| [110] | CAMPBELL B A, GHENT R R, SHEPARD M K. Limits on inference of Mars small-scale topography from MOLA data[J]. Geophysical Research Letters, 2003, 30(3), 1115. |
| [111] | JORDAN T M, COOPER M A, SCHROEDER D M, et al. Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland[J]. The Cryosphere, 2017, 11(3): 1247-1264. |
| [112] | 张驰, 关平, 张济华, 等. 分形理论表征非常规油气储层孔隙结构特征研究进展[J]. 北京大学学报(自然科学版), 2023, 59(5): 897-908. |
| [113] | 王玥蕴, 于炳松, 沈臻欢. 砂岩孔喉结构复杂性定量表征及其对渗透率的影响: 以东营凹陷沙河街组为例[J]. 油气地质与采收率, 2022, 29(5): 39-48. |
| [114] | SHEN Z H, YU B S, RUAN Z, et al. Characteristics of pore systems in the oil-bearing sandstones of the Dongying Depression, Bohai Bay Basin[J]. Journal of Petroleum Science and Engineering, 2022, 218, 111031. |
| [115] | CHEN Y F, JIANG C B, LEUNG J Y, et al. Multiscale characterization of shale pore-fracture system: Geological controls on gas transport and pore size classification in shale reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108442. |
| [116] | 董鑫旭, 孟祥振, 蒲仁海. 基于致密砂岩储层孔喉系统分形理论划分的可动流体赋存特征认识[J]. 天然气工业, 2023, 43(3): 78-90. |
| [117] | PENG Q, YIWEN J, JIANCHAO C, et al. Micro-nanopore structure and fractal characteristics of tight sandstone gas reservoirs in the eastern Ordos Basin, China[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(1): 234-245. |
| [118] | MANDELBROT B B, WHEELER J A. The Fractal Geometry of Nature[J]. American Journal of Physics, 1983, 51(3): 286-287. |
| [119] | YOU Z, SONGTAO W, ZHIPING L, et al. Multifractal study of three-dimensional pore structure of sand-conglomerate reservoir based on CT images[J]. Energy & Fuels, 2018, 32(4): 4797-4807. |
| [120] | 陈富瑜, 周勇, 杨栋吉, 等. 基于分形理论的致密砂岩储层孔隙结构研究: 以鄂尔多斯盆地庆城地区延长组长7段为例[J]. 中国矿业大学学报, 2022, 51(5): 941-955. |
| [121] | 刘航宇, 田中元, 徐振永. 基于分形特征的碳酸盐岩储层孔隙结构定量评价[J]. 岩性油气藏, 2017, 29(5): 97-105. |
| [122] | 管全中, 董大忠, 孙莎莎, 等. 深层富有机质页岩孔隙结构分形特征及其地质意义: 以四川盆地威远地区下志留统龙马溪组为例[J]. 天然气工业, 2024, 44(3): 108-118. |
| [123] | 贺小标, 罗群, 李鑫, 等. 陆相混积页岩不同岩相孔隙差异特征及影响机制: 以吉木萨尔凹陷二叠系芦草沟组为例[J]. 中国矿业大学学报, 2024, 53(1): 141-157, 210. |
| [124] | 罗文彬, 马中良, 郑伦举, 等. 海相页岩成岩-成烃过程中孔隙结构的演变: 来自热模拟实验的启示[J]. 石油学报, 2020, 41(5): 540-552. |
| [125] | ELIAZAR I I, SHLESINGER M F. Fractional motions[J]. Physics Reports, 2013, 527(2): 101-129. |
| [1] | 奚晓旭,刘少峰,韦蔚,李珂,焦中虎,李力. 月表虹湾Hurst指数分析[J]. 地学前缘, 2012, 19(6): 137-143. |
| [2] | 李泳 刘晶晶 苏凤环 苏鹏程. 泥石流阵流序列的整体性[J]. 地学前缘, 2009, 16(4): 381-388. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||