地学前缘 ›› 2021, Vol. 28 ›› Issue (5): 136-145.DOI: 10.13745/j.esf.sf.2021.2.6
孙昭玥1,2,3(), 郑西来1, 郑天元1,*(
), 栾永霞4, 辛佳1
收稿日期:
2020-08-26
修回日期:
2020-12-18
出版日期:
2021-09-25
发布日期:
2021-10-29
通信作者:
郑天元
作者简介:
孙昭玥(1991—),女,博士研究生,环境科学专业,主要从事土壤和地下水中污染物的迁移转化研究。E-mail: 1539321291@qq.com
基金资助:
SUN Zhaoyue1,2,3(), ZHENG Xilai1, ZHENG Tianyuan1,*(
), LUAN Yongxia4, XIN Jia1
Received:
2020-08-26
Revised:
2020-12-18
Online:
2021-09-25
Published:
2021-10-29
Contact:
ZHENG Tianyuan
摘要:
包气带作为防止地下水硝酸盐污染的天然屏障,其反硝化效果通常受到碳源的限制。针对地下水硝酸盐污染防治技术现状,本文采用Ca(OH)2处理的玉米芯作为反硝化的碳源材料,构建包气带强化反应层,用响应曲面法研究硝酸盐浓度、含水量和温度的交互作用对脱氮性能影响,并用硝态氮去除率、亚硝态氮累积、pH值变化以及溶解性有机碳(dissolved organic carbon, DOC)淋失通量综合评价脱氮性能,最后采用高通量测序揭示脱氮层中微生物变化。研究结果表明:温度、含水量以及温度和含水量交互作用对硝态氮去除率影响显著,其中温度是反硝化过程中最关键的因素;系统运行74天后,硝态氮去除率达到50%,亚硝态氮累积量(以N计)大多低于3 mg/L,pH值维持在7.0左右,DOC淋失通量(以C计)介于0.10.2 mg/(cm2·d);高通量测序发现,脱氮层中微生物的丰富度降低,而与反硝化和碳分解有关的微生物相对丰度提高,在碳源的刺激下微生物向有利于脱氮的方向演变。
中图分类号:
孙昭玥, 郑西来, 郑天元, 栾永霞, 辛佳. 土壤包气带强化反应层脱氮的控制因素与性能研究[J]. 地学前缘, 2021, 28(5): 136-145.
SUN Zhaoyue, ZHENG Xilai, ZHENG Tianyuan, LUAN Yongxia, XIN Jia. Influencing factors and performance of enhanced denitrification layer in the vadose zone[J]. Earth Science Frontiers, 2021, 28(5): 136-145.
试验 设计 | 影响因素 | 响应值 | |||
---|---|---|---|---|---|
温度A/℃ | 硝态氮浓度 B/(mg·L-1) | 含水量C (WHC)/% | 硝态氮 去除率Y/% | ||
1 | 10 | 100 | 80 | 24.00 | |
2 | 30 | 100 | 80 | 61.42 | |
3 | 10 | 300 | 80 | 27.1 | |
4 | 30 | 300 | 80 | 43.01 | |
5 | 10 | 200 | 60 | 28.02 | |
6 | 30 | 200 | 60 | 35.00 | |
7 | 10 | 200 | 100 | 30.43 | |
8 | 30 | 200 | 100 | 100.00 | |
9 | 20 | 100 | 60 | 30.74 | |
10 | 20 | 300 | 60 | 32.20 | |
11 | 20 | 100 | 100 | 40.72 | |
12 | 20 | 300 | 100 | 33.30 | |
13 | 20 | 200 | 80 | 33.45 | |
14 | 20 | 200 | 80 | 33.44 | |
15 | 20 | 200 | 80 | 33.81 | |
16 | 20 | 200 | 80 | 33.80 | |
17 | 20 | 200 | 80 | 36.01 |
表1 BBD实验设计和响应值
Table 1 Box-Behnken design experiments and response values
试验 设计 | 影响因素 | 响应值 | |||
---|---|---|---|---|---|
温度A/℃ | 硝态氮浓度 B/(mg·L-1) | 含水量C (WHC)/% | 硝态氮 去除率Y/% | ||
1 | 10 | 100 | 80 | 24.00 | |
2 | 30 | 100 | 80 | 61.42 | |
3 | 10 | 300 | 80 | 27.1 | |
4 | 30 | 300 | 80 | 43.01 | |
5 | 10 | 200 | 60 | 28.02 | |
6 | 30 | 200 | 60 | 35.00 | |
7 | 10 | 200 | 100 | 30.43 | |
8 | 30 | 200 | 100 | 100.00 | |
9 | 20 | 100 | 60 | 30.74 | |
10 | 20 | 300 | 60 | 32.20 | |
11 | 20 | 100 | 100 | 40.72 | |
12 | 20 | 300 | 100 | 33.30 | |
13 | 20 | 200 | 80 | 33.45 | |
14 | 20 | 200 | 80 | 33.44 | |
15 | 20 | 200 | 80 | 33.81 | |
16 | 20 | 200 | 80 | 33.80 | |
17 | 20 | 200 | 80 | 36.01 |
图2 硝态氮浓度与温度(a),含水量与温度(b)以及含水量与硝态氮浓度(c)相互作用对硝态氮去除率影响的响应曲面图
Fig.2 Response surface plots showing the effects of interactions between nitrate-nitrogen concentration and temperature (a), moisture and temperature (b) or moisture and nitrate-nitrogen concentration (c) on the nitrate-nitrogen removal efficiency
项目 | 平方和 | 自由度 | 平均方差 | F值 | p值 |
---|---|---|---|---|---|
模型 | 4 766.76 | 9 | 529.64 | 13.83 | 0.001 1 |
温度A | 1 796.70 | 1 | 1 796.70 | 46.93 | 0.000 2 |
硝态氮浓度B | 46.46 | 1 | 46.46 | 1.21 | 0.307 0 |
含水量C | 552.95 | 1 | 552.95 | 14.44 | 0.006 7 |
DAB | 138.30 | 1 | 138.30 | 3.61 | 0.099 1 |
EAC | 1 390.17 | 1 | 1 390.17 | 36.31 | 0.000 5 |
FBC | 19.71 | 1 | 19.71 | 0.51 | 0.496 2 |
A2 | 482.04 | 1 | 482.04 | 12.59 | 0.009 4 |
B2 | 173.42 | 1 | 173.42 | 4.53 | 0.070 8 |
C2 | 181.18 | 1 | 181.18 | 4.73 | 0.066 1 |
表2 硝态氮去除率的模型各项方差分析
Table 2 Variance analysis of nitrate nitrogen removal efficiency
项目 | 平方和 | 自由度 | 平均方差 | F值 | p值 |
---|---|---|---|---|---|
模型 | 4 766.76 | 9 | 529.64 | 13.83 | 0.001 1 |
温度A | 1 796.70 | 1 | 1 796.70 | 46.93 | 0.000 2 |
硝态氮浓度B | 46.46 | 1 | 46.46 | 1.21 | 0.307 0 |
含水量C | 552.95 | 1 | 552.95 | 14.44 | 0.006 7 |
DAB | 138.30 | 1 | 138.30 | 3.61 | 0.099 1 |
EAC | 1 390.17 | 1 | 1 390.17 | 36.31 | 0.000 5 |
FBC | 19.71 | 1 | 19.71 | 0.51 | 0.496 2 |
A2 | 482.04 | 1 | 482.04 | 12.59 | 0.009 4 |
B2 | 173.42 | 1 | 173.42 | 4.53 | 0.070 8 |
C2 | 181.18 | 1 | 181.18 | 4.73 | 0.066 1 |
图3 脱氮层出水硝态氮(a)、亚硝态氮(b)、pH值(c)和DOC淋失通量(d)的变化图
Fig.3 Changes of nitrate-nitrogen concentration (a), nitrite-nitrogen concentration (b), pH value (c) and DOC leaching flux (d) in the effluent of denitrification layer
样品名称 | OTUs | Shannon | Simpson | Chao1 | ACE | Good’s coverage |
---|---|---|---|---|---|---|
脱氮层 | 953 | 6.941 | 0.984 | 946.485 | 992.522 | 0.992 |
土壤对照组 | 1 413 | 7.101 | 0.938 | 1 411.484 | 1 414.006 | 0.992 |
表3 脱氮层与土壤对照组中微生物群落多样性分析
Table 3 Analytical results of microbial community diversity in the denitrification layer and soil control group
样品名称 | OTUs | Shannon | Simpson | Chao1 | ACE | Good’s coverage |
---|---|---|---|---|---|---|
脱氮层 | 953 | 6.941 | 0.984 | 946.485 | 992.522 | 0.992 |
土壤对照组 | 1 413 | 7.101 | 0.938 | 1 411.484 | 1 414.006 | 0.992 |
图5 脱氮层(a)和对照组(b)微生物物种在纲水平上的相对丰度
Fig.5 Relative abundances of predominant bacterial classes in the denitrification layer (a) and soil control group (b)
图6 脱氮层(a)和对照组(b)微生物在属水平上的相对丰度
Fig.6 Relative abundances of predominant functional bacterial genera in the denitrification layer (a) and soil control group (b)
[1] |
RIVETT M O, BUSS S R, MORGAN P, et al. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16):4215-4232.
DOI URL |
[2] |
WANG X M, WANG J L. Denitrification of nitrate-contaminated groundwater using biodegradable snack ware as carbon source under low-temperature condition[J]. International Journal of Environmental Science and Technology, 2012, 9(1):113-118.
DOI URL |
[3] |
DELLA ROCCA C, BELGIORNO V, MERIÇ S. Overview of in situ applicable nitrate removal processes[J]. Desalination, 2007, 204(1/2/3):46-62.
DOI URL |
[4] |
CHEN S M, WANG F H, ZHANG Y M, et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone[J]. Environmental Microbiology, 2018, 20(3):980-992.
DOI URL |
[5] |
CAMERON S G, SCHIPPER L A. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds[J]. Ecological Engineering, 2010, 36(11):1588-1595.
DOI URL |
[6] | 赵文莉, 郝瑞霞, 李斌, 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014, 35(3):987-994. |
[7] |
HU R T, ZHENG X L, XIN J, et al. Selective enhancement and verification of woody biomass digestibility as a denitrification carbon source[J]. Bioresource Technology, 2017, 244:313-319.
DOI URL |
[8] |
HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management, 2019, 246:832-839.
DOI URL |
[9] | 马雨阳, 纪鸿飞, 孙昭玥, 等. 碱预处理对固体碳源生物可利用性及其强化生物脱氮效能的影响[J]. 中国海洋大学学报(自然科学版), 2019, 49(6):95-103. |
[10] |
HA T K T, MAEDA M, FUJIWARA T, et al. Effects of soil type and nitrate concentration on denitrification products (N2O and N2) under flooded conditions in laboratory microcosms[J]. Soil Science and Plant Nutrition, 2015, 61(6):999-1004.
DOI URL |
[11] |
WAN R, ZHENG X, CHEN Y G, et al. Using cassava distiller’s dried grains as carbon and microbe sources to enhance denitrification of nitrate-contaminated groundwater[J]. Applied Microbiology and Biotechnology, 2015, 99(6):2839-2847.
DOI URL |
[12] |
ŠIMEK M, JÍŠOVÁ L, HOPKINS D W . What is the so-called optimum pH for denitrification in soil?[J]. Soil Biology and Biochemistry, 2002, 34(9):1227-1234.
DOI URL |
[13] |
SUN Z Y, ZHENG T Y, XIN J, et al. Effects of alkali-treated agricultural residues on nitrate removal and N2O reduction of denitrification in unsaturated soil[J]. Journal of Environmental Management, 2018, 214:276-282.
DOI URL |
[14] | 夏璐. 人工回灌含水层微生物堵塞机理与控制技术研究[D]. 青岛: 中国海洋大学, 2015. |
[15] |
CHU L B, WANG J L. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J]. Chemosphere, 2013, 91(9):1310-1316.
DOI URL |
[16] | ZHANG S N, LIU F, HUANG Z R, et al. Are vegetated drainage ditches effective for nitrogen removal under cold temperatures?[J]. Bioresource Technology, 2020, 301:122744. |
[17] | DAMARAJU S, SINGH U K, SREEKANTH D, et al. Denitrification in biofilm configured horizontal flow woodchip bioreactor: effect of hydraulic retention time and biomass growth[J]. Ecohydrology & Hydrobiology, 2015, 15(1):39-48. |
[18] | 付昆明, 曹相生, 孟雪征, 等. 污水反硝化过程中亚硝酸盐的积累规律[J]. 环境科学, 2011, 32(6):1660-1664. |
[19] | 马娟, 宋相蕊, 李璐. 碳源对反硝化过程NO2积累及出水pH值的影响[J]. 中国环境科学, 2014, 34(10):2556-2561. |
[20] |
RUST C M, AELION C M, FLORA J R V . Control of pH during denitrification in subsurface sediment microcosms using encapsulated phosphate buffer[J]. Water Research, 2000, 34(5):1447-1454.
DOI URL |
[21] | 姜应和, 李超. 树皮填料补充碳源人工湿地脱氮初步试验研究[J]. 环境科学, 2011, 32(1):158-164. |
[22] |
SCHIPPER L A, VOJVODI-VUKOVI- M. Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall[J]. Water Research, 2001, 35(14):3473-3477.
DOI URL |
[23] |
XU D, XIAO E R, XU P, et al. Performance and microbial communities of completely autotrophic denitrification in a bioelectrochemically-assisted constructed wetland system for nitrate removal[J]. Bioresource Technology, 2017, 228:39-46.
DOI URL |
[24] |
HARTER J, WEIGOLD P, EL-HADIDI M, et al. Soil biochar amendment shapes the composition of N2O-reducing microbial communities[J]. Science of the Total Environment, 2016, 562:379-390.
DOI URL |
[25] |
SHEN Z Q, ZHOU Y X, LIU J, et al. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland[J]. Bioresource Technology, 2015, 175:239-244.
DOI URL |
[26] |
LEE S H, KONDAVEETI S, MIN B, et al. Enrichment of Clostridia during the operation of an external-powered bio-electrochemical denitrification system[J]. Process Biochemistry, 2013, 48(2):306-311.
DOI URL |
[27] |
XUE D, HUANG X D. Changes in soil microbial community structure with planting years and cultivars of tree peony (Paeonia suffruticosa)[J]. World Journal of Microbiology and Biotechnology, 2014, 30(2):389-397.
DOI URL |
[28] |
FENG L J, CHEN K, HAN D D, et al. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers[J]. Bioresource Technology, 2017, 224:236-245.
DOI URL |
[29] |
RAVACHOL J, BORNE R, MEYNIAL-SALLES I, et al. Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum[J]. Biotechnology for Biofuels, 2015, 8:114.
DOI URL |
[30] |
LUO J Y, HUANG W X, ZHU Y, et al. Influences of different iron forms activated peroxydisulfate on volatile fatty acids production during waste activated sludge anaerobic fermentation[J]. Science of the Total Environment, 2020, 705:135878.
DOI URL |
[31] |
XU P, NI Z F, ZONG M H, et al. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design[J]. International Journal of Biological Macromolecules, 2020, 150:9-15.
DOI URL |
[32] |
RUNGKITWATANANUKUL P, NOMAI S, HIRAKATA Y, et al. Microbial community analysis using MiSeq sequencing in a novel configuration fluidized bed reactor for effective denitrification[J]. Bioresource Technology, 2016, 221:677-681.
DOI URL |
[33] |
ZIELI-SKA M, RUSANOWSKA P, JARZ-BEK J, et al. Community dynamics of denitrifying bacteria in full-scale wastewater treatment plants[J]. Environmental Technology, 2016, 37(18):2358-2367.
DOI URL |
[34] |
ISHII S, JOIKAI K, OTSUKA S, et al. Denitrification and nitrate-dependent Fe(II) oxidation in various pseudogulbenkiania strains[J]. Microbes and Environments, 2016, 31(3):293-298.
DOI URL |
[35] | FENG L J, XU J, XU X Y, et al. Enhanced biological nitrogen removal via dissolved oxygen partitioning and step feeding in a simulated river bioreactor for contaminated source water remediation[J]. International Biodeterioration & Biodegradation, 2012, 71:72-79. |
[36] |
SU J F, SHI J X, MA F. Aerobic denitrification and biomineralization by a novel heterotrophic bacterium, Acinetobacter sp. H36[J]. Marine Pollution Bulletin, 2017, 116(1/2):209-215.
DOI URL |
[37] |
SHI Y L, LIU X R, ZHANG Q W. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil[J]. Science of the Total Environment, 2019, 686:199-211.
DOI URL |
[1] | 徐昭萌, 刘素美. 海洋低氧环境底栖有孔虫研究进展[J]. 地学前缘, 2022, 29(5): 59-72. |
[2] | 张玉叶, 何江涛, 邓璐, 邹华, 张金刚, 杨美萍. 洛美沙星和诺氟沙星对水中生物反硝化过程的影响模拟试验[J]. 地学前缘, 2022, 29(5): 497-507. |
[3] | 郭晶晶,夏学齐,杨忠芳. 长江流域典型区域土壤碳库变化及其影响因素[J]. 地学前缘, 2015, 22(6): 241-250. |
[4] | 张建美,郝春博,冯传平,李思远,张丽娜,郝会玲,朱江. 磷对地下水反硝化系统中细菌菌群结构的影响[J]. 地学前缘, 2014, 21(4): 191-198. |
[5] | 夏学齐, 杨忠芳, 余涛, 侯青叶, 白荣杰, 崔玉军. 中国东北地区20世纪末土地利用变化的土壤碳源汇效应[J]. 地学前缘, 2011, 18(6): 56-63. |
[6] | 郭华明 陈思 任燕. 反硝化菌的耐砷驯化及其对水铁矿吸附态砷迁移转化的影响[J]. 地学前缘, 2008, 15(5): 317-323. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||