地学前缘 ›› 2020, Vol. 27 ›› Issue (4): 49-65.DOI: 10.13745/j.esf.sf.2020.4.23
刘洪1(), 张林奎1, 黄瀚霄1,*(
), 李光明1, 欧阳渊1, 余槐2, 梁维1, 张洪铭2, 陈小平2
收稿日期:
2019-11-09
修回日期:
2020-04-20
出版日期:
2020-07-25
发布日期:
2020-07-25
通信作者:
黄瀚霄
作者简介:
刘 洪(1987—),男,硕士,工程师,主要从事矿床学、生态地质学研究。E-mail: liuh@mail.cgs.gov.cn
基金资助:
LIU Hong1(), ZHANG Linkui1, HUANG Hanxiao1,*(
), LI Guangming1, OUYANG Yuan1, YU Huai2, LIANG Wei1, ZHANG Hongming2, CHEN Xiaoping2
Received:
2019-11-09
Revised:
2020-04-20
Online:
2020-07-25
Published:
2020-07-25
Contact:
HUANG Hanxiao
摘要:
西藏昂仁县罗布真金银矿位于冈底斯成矿带西段,其大地构造位置属于南拉萨微陆块,矿体受北西西的断裂构造控制,呈脉状、透镜状产于始新世帕那组火山岩中。按照矿石工业类型分类,矿石类型可分为角砾岩型、石英脉型和蚀变岩型等三类,主要金银矿石矿物为自然金和碲银矿等。矿区广泛繁育不同特征的热液脉体,通过系统的野外观测以及全面的岩相学研究,依据矿物共生组合、脉体切穿关系及蚀变特征,将热液脉体从早到晚划分为石英-黄铁矿阶段(S1)的石英-黄铁矿大脉、玉髓华石英-金-多金属硫化物阶段(S2)的石英-金属硫化物网脉、石英-碳酸盐矿物阶段(S3)的石英-方解石细脉。罗布真金银矿床热液脉体主要发育气液两相流体包裹体(富液两相包裹体、富气两相包裹体)和含子矿物(碳酸盐矿物)三相流体包裹体。本文在野外地质调查的基础上,对不同成矿阶段的石英脉进行了流体包裹体的岩相学观测、显微测温、成分分析以及H-O同位素测试。S1阶段流体包裹体的形成温度集中在310~330 ℃,盐度(w(NaCleq))集中在5.0%~10.1%,密度介于0.60~0.80 g/cm3;S2阶段流体包裹体的形成温度集中在240~280 ℃,盐度介于3.0%~7.0%,密度介于0.70~0.90 g/cm3;S3阶段流体包裹体的形成温度集中在121~215 ℃,盐度集中在1.0%~5.0%,密度集中在0.85~1.00 g/cm3。拉曼分析表明,罗布真金银矿的流体包裹体成分以H2O为主,并含有少量的CO2、N2、CH4等气体及方解石子晶。各热液脉体石英中流体包裹体的δ${{\text{D}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$值的变化范围为-106.1‰~-97.5‰,δ18${{\text{O}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$值的变化范围为-7.33‰~-7.13‰,展示其成矿流体主要源自火山岩围岩中的循环地下水,在早阶段还有少量岩浆水的加入。成矿流体在岩浆作用驱动下,沿着断裂从深部封闭体系运移到浅部的开放体系,迅速突破临界状态减压沸腾并产生相分离导致金属硫化物沉淀,形成矿化。随着含矿热液成矿物质及金属硫化物的大量析出,流体温度、盐度迅速降低,金属矿物成矿作用随之结束。罗布真金银矿床的成矿流体为中低温、低盐度、中低密度并含有少量CO2、N2、CH4等气体的流体,具有典型的浅成低温热液矿床成矿流体的特征。
中图分类号:
刘洪, 张林奎, 黄瀚霄, 李光明, 欧阳渊, 余槐, 梁维, 张洪铭, 陈小平. 冈底斯西段罗布真浅成低温热液型金银矿的成矿流体演化:来自流体包裹体、H-O同位素的证据[J]. 地学前缘, 2020, 27(4): 49-65.
LIU Hong, ZHANG Linkui, HUANG Hanxiao, LI Guangming, OUYANG Yuan, YU Huai, LIANG Wei, ZHANG Hongming, CHEN Xiaoping. Evolution of ore-forming fluids in the Luobuzhen epithermal gold-silver deposit in western Gangdisi: fluid inclusion and H-O isotope evidence[J]. Earth Science Frontiers, 2020, 27(4): 49-65.
图2 罗布真—朱诺地区区域地质简图(据文献[53,54]修改) 1—第四系;2—始新统帕拉组;3—古新统年波组;4—古新统典中组;5—中新世中酸性斑岩;6—渐新世中酸性斑岩;7—始新世中性侵入岩;8—铜钼矿床(点);9—金银矿床(点)。
Fig.2 Simplified geological map of the Luobuzhen-Zhunuo region. Modified after [53-54].
图3 罗布真金银矿床矿区地质图 1—始新统帕那组英安岩;2—始新统帕那组英安岩、流纹岩;3—始新统帕那组流纹岩;4—中新世酸性斑岩;5—始新世花岗闪长岩;6—破碎带;7—金银矿体及编号。
Fig.3 Geological sketch map of the Luobuzhen silver-gold deposit
图4 野外及镜下照片 a—产于破碎带中的Ⅲ-4金银矿体和二长花岗斑岩脉;b—角砾状矿石;c—S2阶段蚀变岩型矿石;d—S1阶段自形-半自形黄铁矿被S2阶段方铅矿、黄铁矿、闪锌矿交代;e—S2阶段石英-多金属硫化物脉穿插S1阶段自形黄铁矿和石英;f—S2阶段闪锌矿和黄铜矿的乳滴状结构;g—S2阶段的闪锌矿和黄铜矿交代S1阶段的黄铁矿和毒砂;h—S2阶段自然金和方铅矿产于S1阶段黄铁矿裂隙中;i—S1阶段自形黄铁矿被S2阶段方铅矿交代;Dac—英安岩;Qz—石英;Py—黄铁矿;Cpy—黄铜矿;Gn—方铅矿;Sp—闪锌矿;Apy—毒砂;Gl—自然金;Sul—金属硫化物。
Fig.4 Photo (a) and photomicrograph (b-i) of the Luobuzhen silver-gold deposit
图5 罗布真银金矿床中流体包裹体的显微照片 a—石英-黄铁矿阶段(S1)石英脉中气液两相(Ⅰ型)流体包裹体;b—玉髓化石英-金-多硫化物阶段(S2)石英脉中含子矿物三相(Ⅱ型)流体包裹体;c—石英-碳酸盐矿物阶段(S3)石英脉中气液两相(Ⅰ型)流体包裹体;d—石英-碳酸盐矿物阶段(S3)方解石脉中气液两相(Ⅰ型)流体包裹体;e—石英-碳酸盐矿物阶段(S3)石英脉中气液两相(Ⅰ型)流体包裹体;f—石英-黄铁矿阶段(S1)石英脉中气液两相(Ⅰ型)流体包裹体;g—玉髓化石英-金-硫化物阶段(S2)石英脉中气液两相(Ⅰ型)流体包裹体;h—玉髓化石英-金-硫化物阶段(S2)石英脉中气液两相(Ⅰ型)流体包裹体;i—石英-黄铁矿阶段(S1)石英脉中气液两相(Ⅰ型)流体包裹体;L—液相;V—气相;Cal—方解石。
Fig.5 Photomicrographs of fluid inclusions in quartz from the Luobuzhen silver-gold deposit
图6 流体包裹体均一温度、盐度直方图
Fig.6 Homogenization temperature (a,c,e) and salinity (b,d,f) histogram for the fluid inclusions of each mineralization stage in the Luobuzhen silver-gold deposit
成矿阶段 | 热液脉体类型 | 包裹体 类型 | 冰晶消失 | 气液相完全均一 | |||
---|---|---|---|---|---|---|---|
冰点温度/℃ | 测点数 | 均一温度/℃ | 测点数 | 均一态 | |||
石英-黄铁矿阶段(S1) | 石英-黄铁矿脉 | Ⅰa | -7.6~-0.6 平均: -4.5 | 90 | 292~345 平均: 316 | 90 | 液态 |
Ⅰb | -7.4~-1.1 平均: -5.3 | 7 | 304~316 平均: 311 | 7 | 液/气态 | ||
Ⅱ | -7.9~-1.1 平均: -4.3 | 16 | 294~343 平均: 319 | 16 | 液态 | ||
玉髓化石英-金-多金属硫化物阶段(S2) | 石英-多金属硫化网脉 | Ⅰa | -5.3~-0.1 平均: -2.4 | 133 | 211~298 平均: 260 | 133 | 液态 |
Ⅰb | -3.9~-0.9 平均: -2.3 | 24 | 230~285 平均:359 | 24 | 液/气态 | ||
Ⅱ | -3.3~-0.7 平均: -1.6 | 5 | 220~297 平均: 243 | 5 | 液态 | ||
石英-碳酸盐矿物阶段(S3) | 石英-方解石-黄铁矿脉 | Ⅰa | -4.6~-0.2 平均: -1.9 | 55 | 121~215 平均: 165 | 55 | 液态 |
Ⅰb | -3.8~-0.1 平均: -2.0 | 20 | 123~202 平均: 168 | 20 | 气态 | ||
Ⅱ | -2.6~-2.6 平均: -2.6 | 3 | 155~213 平均: 219 | 3 | 液态 |
表2 罗布真银金矿床流体包裹体显微测温结果统计表
Table 2 Results of microthermometric measurements of fluid inclusions from the Luobuzhen silver-gold deposit
成矿阶段 | 热液脉体类型 | 包裹体 类型 | 冰晶消失 | 气液相完全均一 | |||
---|---|---|---|---|---|---|---|
冰点温度/℃ | 测点数 | 均一温度/℃ | 测点数 | 均一态 | |||
石英-黄铁矿阶段(S1) | 石英-黄铁矿脉 | Ⅰa | -7.6~-0.6 平均: -4.5 | 90 | 292~345 平均: 316 | 90 | 液态 |
Ⅰb | -7.4~-1.1 平均: -5.3 | 7 | 304~316 平均: 311 | 7 | 液/气态 | ||
Ⅱ | -7.9~-1.1 平均: -4.3 | 16 | 294~343 平均: 319 | 16 | 液态 | ||
玉髓化石英-金-多金属硫化物阶段(S2) | 石英-多金属硫化网脉 | Ⅰa | -5.3~-0.1 平均: -2.4 | 133 | 211~298 平均: 260 | 133 | 液态 |
Ⅰb | -3.9~-0.9 平均: -2.3 | 24 | 230~285 平均:359 | 24 | 液/气态 | ||
Ⅱ | -3.3~-0.7 平均: -1.6 | 5 | 220~297 平均: 243 | 5 | 液态 | ||
石英-碳酸盐矿物阶段(S3) | 石英-方解石-黄铁矿脉 | Ⅰa | -4.6~-0.2 平均: -1.9 | 55 | 121~215 平均: 165 | 55 | 液态 |
Ⅰb | -3.8~-0.1 平均: -2.0 | 20 | 123~202 平均: 168 | 20 | 气态 | ||
Ⅱ | -2.6~-2.6 平均: -2.6 | 3 | 155~213 平均: 219 | 3 | 液态 |
成矿阶段 | 脉体类型 | 包裹体类型 | 相态 | 成分 | 测点数 | 拉曼位移/cm-1 |
---|---|---|---|---|---|---|
玉髓化石 英-金-黄 铁矿阶段 (S1) | 石英-黄铁矿脉 | 气液两相包裹体(Ⅰ型) | 液相 | H2O | 15 | 3 000~3 720 |
气相 | CO2 | 4 | 1 284,1 285,1 387,1 388,1 389 | |||
含子矿物包裹体(Ⅱ型) | 液相 | H2O | 10 | 3 000~3 720 | ||
气相 | H2O | 10 | 2 920~3 700 | |||
CO2 | 2 | 1 284,1 388 | ||||
CH4 | 1 | 2 915 | ||||
N2 | 1 | 2 333 | ||||
子矿物相 | Cal | 2 | 1 086 | |||
石英-多金属硫化物阶段(S2) | 石英-多金属硫化网脉 | 气液两相包裹体(Ⅰ型) | 液相 | H2O | 10 | 2 920~3 700 |
气相 | H2O | 10 | 2 850~3 650 | |||
CO2 | 2 | 1 283,1 285,1 389 | ||||
CH4 | 1 | 2 915 | ||||
N2 | 1 | 2 329 | ||||
含子矿物包裹体(Ⅱ型) | 液相 | H2O | 10 | 2 920~3 700 | ||
气相 | H2O | 10 | 2 950~3 700 | |||
CO2 | 3 | 1 283,1 387,1 389 | ||||
CH4 | 2 | 2 913,2 919 | ||||
N2 | 1 | 2 329 | ||||
子矿物相 | Cal | 3 | 1 086 | |||
石英-碳酸盐矿物阶段(S3) | 石英-方解石-黄铁矿脉 | 气液两相包裹体(Ⅰ型) | 液相 | H2O | 10 | 2 960~3 720 |
气相 | H2O | 10 | 2 900~3 720 | |||
含子矿物包裹体(Ⅱ型) | 液相 | H2O | 10 | 2 920~3 720 | ||
气相 | H2O | 10 | 2 880~3 800 | |||
子矿物相 | Cal | 2 | 1 086 |
表3 罗布真银金矿床给类型包裹体的拉曼光谱特征
Table 3 Raman spectra of fluid inclusions from the Luobuzhen silver-gold deposit
成矿阶段 | 脉体类型 | 包裹体类型 | 相态 | 成分 | 测点数 | 拉曼位移/cm-1 |
---|---|---|---|---|---|---|
玉髓化石 英-金-黄 铁矿阶段 (S1) | 石英-黄铁矿脉 | 气液两相包裹体(Ⅰ型) | 液相 | H2O | 15 | 3 000~3 720 |
气相 | CO2 | 4 | 1 284,1 285,1 387,1 388,1 389 | |||
含子矿物包裹体(Ⅱ型) | 液相 | H2O | 10 | 3 000~3 720 | ||
气相 | H2O | 10 | 2 920~3 700 | |||
CO2 | 2 | 1 284,1 388 | ||||
CH4 | 1 | 2 915 | ||||
N2 | 1 | 2 333 | ||||
子矿物相 | Cal | 2 | 1 086 | |||
石英-多金属硫化物阶段(S2) | 石英-多金属硫化网脉 | 气液两相包裹体(Ⅰ型) | 液相 | H2O | 10 | 2 920~3 700 |
气相 | H2O | 10 | 2 850~3 650 | |||
CO2 | 2 | 1 283,1 285,1 389 | ||||
CH4 | 1 | 2 915 | ||||
N2 | 1 | 2 329 | ||||
含子矿物包裹体(Ⅱ型) | 液相 | H2O | 10 | 2 920~3 700 | ||
气相 | H2O | 10 | 2 950~3 700 | |||
CO2 | 3 | 1 283,1 387,1 389 | ||||
CH4 | 2 | 2 913,2 919 | ||||
N2 | 1 | 2 329 | ||||
子矿物相 | Cal | 3 | 1 086 | |||
石英-碳酸盐矿物阶段(S3) | 石英-方解石-黄铁矿脉 | 气液两相包裹体(Ⅰ型) | 液相 | H2O | 10 | 2 960~3 720 |
气相 | H2O | 10 | 2 900~3 720 | |||
含子矿物包裹体(Ⅱ型) | 液相 | H2O | 10 | 2 920~3 720 | ||
气相 | H2O | 10 | 2 880~3 800 | |||
子矿物相 | Cal | 2 | 1 086 |
图7 各阶段包裹体显微照片及激光拉曼光谱 a—S1阶段石英脉中含子矿物三相(Ⅱ型)流体包裹体液相(H2O+CO2)拉曼特征气相(H2O+CO2+N2)拉曼特征;b—S1阶段石英脉中含子矿物三相(Ⅱ型)子矿物(方解石)拉曼特征;c—S1阶段石英脉气液两相(Ⅰ型)流体包裹体液相(H2O+CO2)拉曼特征;d—S2阶段石英脉中含子矿物三相(Ⅱ型)流体包裹体气相(H2O+CO2+CH4)拉曼特征;e—S2阶段石英脉中含子矿物三相(Ⅱ型)流体包裹体子矿物拉曼特征;f—S3阶段石英脉中气液两相(Ⅰ型)流体包裹体气相(H2O+CO2+N2)拉曼特征;Cal—方解石。
Fig.7 Laser Raman spectra and photographs of fluid inclusions in quartz of each mineralization stage
样号 | 成矿阶段 | 测试对象 | 石英 δ18OQz,V-SMOW/‰ | 流体包裹体H2O | |
---|---|---|---|---|---|
δ18${{\text{O}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$/‰ | δ${{\text{D}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$/‰ | ||||
LBZ04-10 | S1阶段 | 石英及包裹体H2O | 13.50 | 7.13 | -97.50 |
LBZ04-11 | S1阶段 | 石英及包裹体H2O | 12.40 | 6.03 | -106.10 |
LBZXC-03 | S1阶段 | 石英及包裹体H2O | 9.00 | 2.63 | -102.40 |
LBZ04-19 | S2阶段 | 石英及包裹体H2O | 10.60 | 2.11 | -101.40 |
LBZ01-17 | S2阶段 | 石英及包裹体H2O | 8.60 | 0.11 | -97.50 |
LBZXC-02 | S3阶段 | 石英及包裹体H2O | 6.80 | -7.33 | -103.20 |
LBZXC-15 | S3阶段 | 石英及包裹体H2O | 7.40 | -6.73 | -106.10 |
表4 罗布真银金矿石英及其流体包裹体水的氢、氧同位素组成
Table 4 δ18${{\text{O}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$-δ${{\text{D}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$ isotopic compositions of quartz and its fluid inclusions from the Luobuzhen silver-gold deposit
样号 | 成矿阶段 | 测试对象 | 石英 δ18OQz,V-SMOW/‰ | 流体包裹体H2O | |
---|---|---|---|---|---|
δ18${{\text{O}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$/‰ | δ${{\text{D}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$/‰ | ||||
LBZ04-10 | S1阶段 | 石英及包裹体H2O | 13.50 | 7.13 | -97.50 |
LBZ04-11 | S1阶段 | 石英及包裹体H2O | 12.40 | 6.03 | -106.10 |
LBZXC-03 | S1阶段 | 石英及包裹体H2O | 9.00 | 2.63 | -102.40 |
LBZ04-19 | S2阶段 | 石英及包裹体H2O | 10.60 | 2.11 | -101.40 |
LBZ01-17 | S2阶段 | 石英及包裹体H2O | 8.60 | 0.11 | -97.50 |
LBZXC-02 | S3阶段 | 石英及包裹体H2O | 6.80 | -7.33 | -103.20 |
LBZXC-15 | S3阶段 | 石英及包裹体H2O | 7.40 | -6.73 | -106.10 |
图8 罗布真银金矿成矿流体的δ18${{\text{O}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$-δ${{\text{D}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$图解 (i据[69];ii据[70];iii据[71];iv据[18];v据[72-73];vi据[74])
Fig.8 Plot of δ18${{\text{O}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$ vs. δ${{\text{D}}_{{{\text{H}}_{2}}\text{O},\text{V-SMOW}}}$ (i after [69], ii after [70], iii after [71], iv after [18], v after [72-73] and vi after [74])
图9 罗布真银金矿流体包裹体盐度-均一温度-密度图(底图据[76]) S1—石英-黄铁矿阶段;S2—玉髓化石英-金-多金属硫化物阶段;S3—石英-碳酸盐矿物阶段。
Fig.9 Salinity-homogenization temperature-density diagram for the Luobuzhen silver-gold deposit.Modified from [76].
[1] | COOKE D R, SIMMONS S F. Characteristics and genesis of epithermal gold deposits[J]. Reviews in Economic Geology, 2000, 13(12):221-244. |
[2] | 江思宏, 聂凤军, 张义, 等. 浅成低温热液型金矿床研究最新进展[J]. 地学前缘, 2004, 11(2):401-411. |
[3] | 李光明, 曾庆贵, 雍永源, 等. 西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义: 以西藏弄如日金锑矿床为例[J]. 矿床地质, 2005, 24(6):595-602. |
[4] | 唐菊兴, 王勤, 杨超, 等. 青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其“缺位找矿”之实践[J]. 矿床地质, 2014, 33(6):1151-1170. |
[5] | 杨永胜, 吴春明, 吕新彪, 等. 低硫化型与高硫化型浅成低温热液金矿中蚀变特征与成矿关系的对比研究[J]. 地质与勘探, 2015, 51(4):655-669. |
[6] | 侯增谦, 曲晓明, 黄卫, 等. 冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J]. 中国地质, 2001, 28(10):27-29. |
[7] | 李光明, 潘桂棠, 王高明, 等. 西藏冈底斯成矿带矿产资源远景评价与展望[J]. 成都理工大学学报(自然科学版), 2004, 31(1):22-27. |
[8] | ZHENG Y Y, SUN X, GAO S B, et al. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt[J]. Journal of Asian Earth Sciences, 2015, 103:23-39. |
[9] | 孟祥金, 侯增谦, 高永丰, 等. 碰撞造山型斑岩铜矿蚀变分带模式: 以西藏冈底斯斑岩铜矿带为例[J]. 地学前缘, 2004, 11(1):201-214. |
[10] | 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6):1-23. |
[11] | 张泽明, 丁慧霞, 董昕, 等. 冈底斯弧的岩浆作用: 从新特提斯俯冲到印度-亚洲碰撞[J]. 地学前缘, 2018, 25(6):78-91. |
[12] | XU W, PAN F, QU X, et al. Xiongcun, Tibet: a telescoped system of veinlet-disseminated CU (au) mineralization and late vein-style AU (Ag)-polymetallic mineralization in a continental collision zone[J]. Ore Geology Reviews, 2009, 36(1/2/3):174-193. |
[13] | 唐菊兴, 丁帅, 孟展, 等. 西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床: 以斯弄多银多金属矿为例[J]. 地球学报, 2016, 37(4):461-470. |
[14] | 黄瀚霄, 李光明, 董随亮, 等. 西藏弄如日金矿床蚀变绢云母40Ar-39Ar年龄及其地质意义[J]. 大地构造与成矿学, 2012, 36(4):607-612. |
[15] | 黄瀚霄, 李光明, 董随亮, 等. 西藏弄如日金矿床类型讨论[J]. 新疆地质, 2014(3):365-369. |
[16] | 钟婉婷, 多吉, 李明礼, 等. 西藏弄如日金矿床花岗斑岩年代学与岩石成因[J]. 岩石学报, 2019, 35(3):913-932. |
[17] | SUN X, ZHENG Y Y, LI M, et al. Genesis of Luobuzhen Pb-Zn veins: implications for porphyry Cu systems and exploration targeting at Luobuzhen-Dongshibu in western Gangdese belt, southern Tibet[J]. Ore Geology Reviews, 2017, 82(11):252-267. |
[18] | 欧阳海涛, 孙祥, 郑有业, 等. 西藏冈底斯罗布真铅锌矿床成矿流体特征[J]. 地质与勘探, 2015, 51(5):816-827. |
[19] |
HUANG H X, LIU H, LI G M, et al. Zircon U-Pb, molybdenite Re-Os and quartz vein Rb-Sr geochronology of the Luobuzhen Au-Ag and Hongshan Cu deposits, Tibet, China: implications for the Oligocene-Miocene porphyry-epithermal metallogenic system[J]. Minerals, 2019, 9(8):476-491.
DOI URL |
[20] | 黄瀚霄, 李光明, 刘洪, 等. 冈底斯成矿带西段首次发现低硫化型浅成低温热液型矿床: 罗布真金银多金属矿床[J]. 中国地质, 2018, 45(3):628-629. |
[21] | DING L, LAI Q Z. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision[J]. Science China (Earth Sciences), 2013, 48(15):1610-1616. |
[22] | 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3):521-533. |
[23] | 许志琴, 杨经绥, 李文昌, 等. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 2013, 29(6):1847-1860. |
[24] | 杨经绥, 许志琴, 李天福, 等. 青藏高原拉萨地块中的大洋俯冲型榴辉岩: 古特提斯洋盆的残留?[J]. 地质通报, 2007, 26(10):1277-1287. |
[25] | 王成善, 戴紧根, 刘志飞, 等. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展[J]. 地学前缘, 2009, 16(3):1-30. |
[26] | 曾令森, 刘静, 高利娥, 等. 青藏高原拉萨地块早中生代高压变质作用及大地构造意义[J]. 地学前缘, 2009, 16(2):140-151. |
[27] | ZHU D C, PAN G T, CHUNG S L, et al. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet[J]. International Geology Review, 2008, 50(5):442-471. |
[28] |
PAN G T, WANG L Q, LI R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53(2):3-14.
DOI URL |
[29] | DING L, MAKSATBEK S, CAI F L, et al. Processes of initial collision and suturing between India and Asia[J]. Science China (Earth Sciences), 2017, 47(3):293-309. |
[30] |
ROYDEN L H, BURCHFIEL B C, VAN D H R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892):1054-1058.
DOI URL |
[31] |
WANG R, RICHARDS J P, HOU Z Q, et al. Zircon U-Pb age and Sr-Nd-Hf-O isotope geochemistry of the Paleocene-Eocene igneous rocks in western Gangdese: evidence for the timing of Neo-Tethyan slab breakoff[J]. Lithos, 2015 224/225, 179-194.
DOI URL |
[32] |
MO X X, NIU Y L, DONG G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1):49-67.
DOI URL |
[33] | WANG R, RICHARDS J P, ZHOU L M, et al. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo±Au deposits in the Gangdese belt, southern Tibet[J]. Earth-Science Reviews, 2015, 150:68-94. |
[34] | WANG R, WEINBERG R F, COLLINS W J, et al. Origin of post-collisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 2018, 181:122-143. |
[35] | 朱弟成, 王青, 赵志丹, 等. 大陆边缘弧岩浆成因与大陆地壳形成[J]. 地学前缘, 2018, 25(6):67-77. |
[36] | 魏启荣, 赵闪, 王健, 等. 西藏南木林县秦马弄地区二长花岗岩体岩石成因[J]. 地学前缘, 2018, 25(6):136-151. |
[37] |
ZHENG Y Y, ZHANG G Y, XU R K, et al. Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet[J]. Chinese Science Bulletin, 2007, 52(22):3139-3147.
DOI URL |
[38] |
HOU Z Q, YANG Z M, LU Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43:247-250.
DOI URL |
[39] |
ZHENG Y C, FU Q, HOU Z Q, et al. Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane, southern Tibet[J]. Ore Geology Reviews, 2015, 70:510-532.
DOI URL |
[40] | LIU H, LI G M, HUANG H X, et al. Petrogenesis of Late Cretaceous Jiangla'angzong I-type granite in Central Lhasa Terrane, Tibet, China: constraints from whole-rock geochemistry, zircon U-Pb geochronology, and Sr-Nd-Pb-Hf isotopes[J]. Acta Geologica Sinica (English Edition), 2018, 92(4):1396-1414. |
[41] | 刘洪, 张林奎, 黄瀚霄, 等. 冈底斯西段鲁尔玛斑岩型铜矿成矿流体性质及演化[J]. 地球科学, 2019, 44(6):1935-1956. |
[42] | 刘洪, 李光明, 黄瀚霄, 等. 西藏冈底斯成矿带发现晚三叠世斑岩型铜矿[J]. 中国地质, 46(5):1238-1240. |
[43] | 刘洪, 夏祥标, 黄瀚霄, 等. 西藏冈底斯成矿带西段学修玛尔幅水系沉积物地球化学统计分析与找矿前景[J]. 桂林理工大学学报(自然科学版), 2019, 39(5):847-855. |
[44] |
TAFTI R, MORTENSEN J K, LANG J R, et al. Jurassic U-Pb and Re-Os ages for the newly discovered Xietongmen Cu-Au porphyry district, Tibet, PRC: implications for metallogenic epochs in the southern Gangdese belt[J]. Economic Geology, 2009, 104(1):127-136.
DOI URL |
[45] | 唐菊兴, 黎风佶, 李志军, 等. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、 辉钼矿Re-Os年龄的证据[J]. 矿床地质, 2010, 29(3):461-475. |
[46] | 黄勇, 唐菊兴, 张丽, 等. 西藏雄村斑岩铜金矿床Ⅲ号矿体岩浆岩锆石U-Pb年龄、 Hf同位素及微量元素组成[J]. 矿床地质, 2014, 33(2):361-372. |
[47] | 刘洪, 张林奎, 黄瀚霄, 等. 西藏冈底斯西段鲁尔玛晚三叠世二长闪长岩的成因[J]. 地球科学, 2019, 44(7):2339-2352. |
[48] | 刘洪, 李光明, 黄瀚霄, 等. 冈底斯成矿带西段鲁尔玛斑岩型铜(金)矿的成矿物质来源: LA-MC-ICP-MS硫化物S同位素、 单矿物Pb同位素的证据[J]. 矿床地质, 2019, 38(4):631-643. |
[49] | YANG Z M, HOU Z Q, CHANG Z S, et al. Cospatial Eocene and Miocene granitoids from the Jiru-cu deposit in Tibet: petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones[J]. Lithos, 2016, 245(3):243-257. |
[50] | 侯增谦, 由晓明, 杨竹森, 等. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6):629-651. |
[51] |
YANG Z M, HOU Z Q, WHITE N C, et al. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet[J]. Ore Geology Reviews, 2019, 36(1):133-159.
DOI URL |
[52] | HUANG Y, LI G M, DING J, et al. Origin of the newly discovered Zhunuo porphyry Cu-Mo-Au deposit in the western part of the Gangdese porphyry copper belt in the southern Tibetan Plateau, SW China[J]. Acta Geologica Sinica (English Edition), 2017, 91(1):109-134. |
[53] | 黄瀚霄, 张林奎, 刘洪, 等. 西藏冈底斯成矿带西段矿床类型、 成矿作用和找矿方向[J]. 地球科学, 2019, 44(6):1876-1887. |
[54] | 黄瀚霄, 李光明, 刘洪, 等. 西藏冈底斯成矿带西段罗布真浅成低温热液型金银多金属矿床地质特征及发现意义[J]. 矿床地质, 2019, 38(5):960-972. |
[55] | 梁银平, 朱杰, 次邛, 等. 青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征[J]. 地球科学: 中国地质大学学报, 2010, 35(2):211-223. |
[56] | 赵亚云, 杨春四, 吕金梁, 等. 西藏罗布真矿区林子宗群火山岩锆石U-Pb年龄、 地球化学特征及其地质意义[J]. 现代地质, 2019, 33(1):73-84. |
[57] | 赵亚云, 刘晓峰, 刘远超, 等. 西藏次玛班硕地区由秋米斑岩体锆石U-Pb年龄、 地球化学特征[J]. 地球科学, 2018, 43(12):4551-4565. |
[58] | 郑有业, 张刚阳, 许荣科, 等. 西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J]. 科学通报, 2007, 52(21):2542-2548. |
[59] | 李淼, 孙祥, 郑有业, 等. 西藏冈底斯朱诺斑岩型铜矿床流体包裹体特征[J]. 岩石学报, 2015, 31(5):1335-1347. |
[60] | 曹晓峰, 吕新彪, 何谋春, 等. 共生黑钨矿与石英中流体包裹体红外显微对比研究: 以瑶岗仙石英脉型钨矿床为例[J]. 矿床地质, 2009, 28(5):611-620. |
[61] | 刘洪, 吕新彪, 刘阁, 等. 河南罗山金城金矿成矿流体性质及演化[J]. 矿物岩石, 2012, 32(3):51-61. |
[62] | 肖万峰, 刘洪, 李光明, 等. 藏北双湖县商旭造山型金矿床的中低温低盐度CO2成矿流体: 流体包裹体、 H-O同位素的证据[J]. 地质论评, 2017, 63(3):793-808. |
[63] | ROEDDER E. Fluid inclusions[J]. Reviews in Mineralogy, 1984, 12:644. |
[64] | 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 487. |
[65] |
BURKE E A J. Raman microspectrometry of fluid inclusions[J]. Lithos, 2001, 55(1/2/3/4):139-158.
DOI URL |
[66] | 吕新彪, 姚书振, 何谋春. 成矿流体包裹体盐度的拉曼光谱测定[J]. 地学前缘, 2001, 8(4):429-433. |
[67] | 谢玉玲, 徐九华, 杨竹森, 等. 铜官山铜矿床矽卡岩矿物中流体包裹体及子矿物的扫描电镜研究[J]. 矿床地质, 2004, 23(3):375-382. |
[68] | 熊索菲, 姚书振, 宫勇军, 等. 河南祁雨沟金矿临界—超临界包裹体特征及成矿流体演化[J]. 吉林大学学报(地球科学版), 2014, 44(1):120-133. |
[69] |
HEDENQUIST J W, LOWENSTERN J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370(6490):519-527.
DOI URL |
[70] |
TAYLOR H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1974, 69(6):843-883.
DOI URL |
[71] | 郑淑蕙, 张知非, 倪葆龄, 等. 西藏地热水的氢氧稳定同位素研究[J]. 北京大学学报(自然科学版), 1982, 18(1):99-106. |
[72] | 刘云飞, 侯增谦, 杨志明, 等. 西藏弄如日金矿流体包裹体研究[J]. 岩石学报, 2011, 27(7):2150-2158. |
[73] | 刘云飞. 西藏冈底斯成矿带浅成低温热液矿床成矿作用[D]. 北京: 中国地质大学(北京), 2013: 1-100. |
[74] | 李海峰, 唐菊兴, 丁帅, 等. 西藏斯弄多银-铅-锌矿床流体包裹体研究和稳定同位素特征[J]. 地球学报, 2017, 38(5):670-686. |
[75] | 陈衍景, 倪培, 范宏瑞, 等. 不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报, 2007, 23(9):2085-2108. |
[76] |
BODNAR R J. A method of calculating fluid inclusion volumes based on vapor bubble diameters and p-v-t-x properties of inclusion fluids[J]. Economic Geology, 1983, 78(3):535-542.
DOI URL |
[77] | 胡庆成, 吕新彪, 高奇, 等. 热液金矿金的溶解和迁移研究进展[J]. 地球科学进展, 2012, 27(8):847-856. |
[78] | 胡庆成, 闫浩, 吴春明, 等. 斑岩-浅成低温热液型Cu-Au矿H2O-Cl-S流体性质和演化方式对成矿的制约[J]. 地质论评, 2014, 60(3):601-610. |
[79] | 刘洪, 李光明, 黄瀚霄, 等. 藏北商旭造山型金矿床成矿物质来源探讨: C、 S、 Pb 同位素证据[J]. 地质论评, 2018, 64(5):1218-1231. |
[80] | 朱江, 吕新彪, 彭三国, 等. 甘肃拾金坡金矿床成矿过程中流体-岩石反应[J]. 矿物岩石地球化学通报, 20143, 3(3):334-341. |
[1] | 黄小强, 柳清琦, 李鹏, 刘翔, 曾乐, 张立平, 石威科, 黄志飚, 范鹏飞, 万海辉, 林跃, 汪宣民, 蔡偿. 湘东北连云山地区上伏矿床伟晶岩地球化学特征、流体包裹体特征及其对矿床成因的约束[J]. 地学前缘, 2023, 30(5): 298-313. |
[2] | 刘秀岩, 陈红汉, 肖雪薇, 李培军, 王保忠. 页岩气成气过程的流体包裹体证据——以重庆秀山剖面下寒武统牛蹄塘组为例[J]. 地学前缘, 2023, 30(3): 165-180. |
[3] | 肖雪薇, 陈红汉, 刘秀岩, 彭中勤, 李培军, 王保忠. 湘西吉首斜坡带下寒武统牛蹄塘组页岩气成气过程的流体包裹体证据:以湘吉地1井为例[J]. 地学前缘, 2023, 30(3): 181-194. |
[4] | 何陈诚, 陈红汉, 肖雪薇, 刘秀岩, 苏奥. 中-上扬子地区下寒武统筇竹寺阶泥页岩差异成气过程分析[J]. 地学前缘, 2023, 30(3): 44-65. |
[5] | 樊馥, 侯献华, 郑绵平, 孟凡巍, 杨振京, 苗青. 柴达木盆地大浪滩梁ZK02孔早—中更新世石盐纯液相流体包裹体均一温度及其对钾盐成矿的约束[J]. 地学前缘, 2021, 28(6): 105-114. |
[6] | 倪艳华, 李明慧, 方小敏, 孟凡巍, 颜茂都, 刘迎新. 柴达木盆地西部中更新世气候转型期的古水温:来自SG-1钻孔石盐流体包裹体的证据[J]. 地学前缘, 2021, 28(6): 115-124. |
[7] | 欧阳鑫, 章永梅, 顾雪祥, 刘丽, 王路智, 高丽晔. 内蒙古撰山子金矿床流体包裹体特征与矿床成因[J]. 地学前缘, 2021, 28(2): 320-332. |
[8] | 余晓艳, 郑育宇, 张婷雅, 郭鸿舒, 龙政宇, 万佳鑫, 张存. 云南大丫口祖母绿颜色环带成因对多阶段成矿的指示意义[J]. 地学前缘, 2020, 27(5): 116-125. |
[9] | 杨富成, 李文昌, 祝向平, 江小均, 刘俊, 廖忠礼, 刘鸿飞, 杨后斌, 李勇. 藏东芒康县巴达铜金矿床地质特征及找矿方向研究[J]. 地学前缘, 2020, 27(4): 232-243. |
[10] | 倪培, 迟哲, 潘君屹. 斑岩型和浅成低温热液型矿床成矿流体与找矿预测研究:以华南若干典型矿床为例[J]. 地学前缘, 2020, 27(2): 60-78. |
[11] | 王银宏, 刘家军, 张梅, 张方方, 王康, 咸雪辰, 郭灵俊. 内蒙古阿扎哈达铜铋矿床流体包裹体和碳-氧-硫-铅同位素地球化学研究[J]. 地学前缘, 2020, 27(2): 391-404. |
[12] | 陈宇,曹淑云,邓友国,程雪梅,吕美霞,董彦龙. 哀牢山—红河剪切带中流体记录及地质意义[J]. 地学前缘, 2019, 26(2): 42-57. |
[13] | 于杰,李诺,张博,疏孙平,陈衍景. 西天山小于赞金矿成矿流体、成矿年代学特征及其地质意义[J]. 地学前缘, 2018, 25(5): 83-95. |
[14] | 许强伟,王玭,钟军,王成明,郑义,方京. 内蒙古克什克腾旗长岭子铅锌矿床流体包裹体及矿床成因类型研究[J]. 地学前缘, 2018, 25(5): 151-166. |
[15] | 陈公正,武广,武文恒,张彤,李铁刚,刘瑞麟,武利文,章培春,江彪,王志利. 大兴安岭南段道伦达坝铜多金属矿床流体包裹体研究和同位素特征[J]. 地学前缘, 2018, 25(5): 202-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||