地学前缘 ›› 2025, Vol. 32 ›› Issue (1): 283-301.DOI: 10.13745/j.esf.sf.2024.10.29
郑澳月1(), 费金娜1, 陈永清1,*(
), 宁妍云1,2, 曹一琳1,3, 赵鹏大1
收稿日期:
2024-08-05
修回日期:
2024-10-10
出版日期:
2025-01-25
发布日期:
2025-01-15
通信作者:
*陈永清(1960—),男,博士,教授,从事矿产资源定量勘查与评价教学与研究工作。E-mail: yqchen@cugb.edu.cn
作者简介:
郑澳月(1999—),女,博士研究生,从事致矿信息提取和矿产资源定量评价工作。E-mail: aoyuez@qq.com
基金资助:
ZHENG Aoyue1(), FEI Jinna1, CHEN Yongqing1,*(
), NING Yanyun1,2, CAO Yilin1,3, ZHAO Pengda1
Received:
2024-08-05
Revised:
2024-10-10
Online:
2025-01-25
Published:
2025-01-15
摘要:
成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。 基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。 奇异值分解(singular value decomposition,SVD)可将成矿元素组主成分得分进一步分解为两个部分:(1)成矿元素组合区域异常分量,能够表征在地壳演化过程中,由各种地质作用(岩浆作用、沉积作用和/或变质作用)形成的有利于成矿的高背景区域;(2)成矿元素组合局部异常分量,能够表征成矿作用引起的,叠加在成矿元素组合区域异常分量之上的成矿元素组合局部异常分量,应用局部异常分量能够识别找矿靶区。本次研究,首先基于国家1∶200 000水系沉积物地球化学数据,应用主成分分析建立不同类型的成矿元素组;其次,利用SVD从成矿元素组的主成分得分中识别出不同类型成矿过程引起的成矿元素组合局部异常分量;最后,应用局部异常分量识别找矿靶区。最终在腾冲地块圈定15处找矿靶区,其中Sn-W找矿靶区8处,Pb-Zn-Ag找矿靶区7处。预测Sn-W潜在资源量915 Mt,Pb-Zn-Ag潜在资源量792 Mt。
中图分类号:
郑澳月, 费金娜, 陈永清, 宁妍云, 曹一琳, 赵鹏大. 应用奇异值分解(SVD)-主成分分析(PCA)组合模型定量圈定与评价腾冲地块锡钨和铅锌多金属找矿靶区[J]. 地学前缘, 2025, 32(1): 283-301.
ZHENG Aoyue, FEI Jinna, CHEN Yongqing, NING Yanyun, CAO Yilin, ZHAO Pengda. Quantitative delineation and evaluation of Sn-W and Pb-Zn polymetallic prospecting target areas in the Tengchong Block by SVD and PCA[J]. Earth Science Frontiers, 2025, 32(1): 283-301.
图1 腾冲地块地质矿产图(据文献[28]修改) a—三江特提斯造山带区域构造格架和腾冲Sn多金属矿带位置;b—Sn多金属矿带地质和矿化简化图(据文献[27])。CMCIS—昌宁-孟连-清迈-因他侬缝合带;SF—实皆断层;ARF—哀牢山-红河断层;GRF—高黎贡-瑞丽断裂。1—叫鸡冠梁子铅锌铁矿床;2—大洞场中型锌铁矿床;3—滇滩铅锌铁矿床;4—小龙河锡矿床;5—来利山大型锡矿床。
Fig.1 Simplified geological and mineral resources map of the Tengchong Block. Modified after [28].
主成分 | Ag | As | Au | B | Ba | Bi | Cd | Co | Cr | Cu | F |
---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | 0.115 | 0.434 | 0.356 | 0.234 | 0.125 | -0.216 | 0.375 | 0.904 | 0.879 | 0.779 | 0.162 |
PC2 | 0.167 | 0.249 | 0.146 | 0.379 | -0.013 | 0.73 | 0.127 | -0.116 | -0.089 | 0.076 | 0.669 |
PC3 | 0.232 | 0.503 | 0.214 | 0.687 | -0.053 | 0.024 | 0.241 | 0.191 | 0.259 | 0.327 | 0.007 |
PC4 | 0.773 | 0.391 | 0.215 | 0.038 | -0.002 | 0.344 | 0.708 | 0.049 | -0.003 | 0.253 | 0.025 |
PC5 | -0.192 | -0.289 | -0.182 | -0.243 | 0.035 | -0.078 | 0.039 | 0.076 | -0.085 | -0.086 | 0.125 |
PC6 | -0.073 | -0.249 | -0.319 | -0.055 | 0.879 | -0.052 | -0.147 | 0.031 | -0.053 | -0.136 | 0.217 |
主成分 | Mn | Mo | Nb | Ni | Pb | Sb | Sn | Sr | Ti | V | W |
PC1 | 0.746 | 0.35 | -0.118 | 0.822 | -0.207 | 0.491 | -0.327 | 0.165 | 0.88 | 0.894 | -0.209 |
PC2 | -0.067 | 0.07 | 0.435 | -0.002 | 0.299 | 0.052 | 0.754 | -0.083 | -0.14 | -0.133 | 0.785 |
PC3 | -0.121 | -0.083 | -0.609 | 0.323 | -0.161 | 0.492 | -0.161 | -0.121 | -0.117 | 0.049 | 0.033 |
PC4 | 0.263 | 0.338 | -0.165 | 0.065 | 0.771 | 0.328 | 0.184 | -0.173 | -0.091 | -0.008 | 0.173 |
PC5 | 0.112 | -0.361 | -0.145 | -0.189 | -0.132 | -0.162 | -0.035 | 0.747 | -0.013 | 0.099 | -0.181 |
PC6 | 0.038 | -0.312 | -0.255 | -0.176 | 0.104 | -0.248 | -0.047 | 0.361 | 0.153 | 0.173 | -0.203 |
主成分 | Be | Zn | Al2O3 | CaO | Fe2O3 | K2O | MgO | Na2O | SiO2 | 特征值 | 方差累计 贡献/% |
PC1 | -0.043 | 0.645 | 0.087 | 0.429 | 0.923 | -0.715 | 0.628 | -0.414 | -0.54 | 10.123 | 32.656 |
PC2 | 0.305 | 0.117 | 0.183 | -0.198 | -0.072 | 0.325 | -0.147 | 0.203 | 0.109 | 4.859 | 48.331 |
PC3 | -0.426 | -0.167 | -0.705 | 0.151 | -0.061 | -0.286 | 0.38 | -0.228 | 0.321 | 2.882 | 57.627 |
PC4 | 0.043 | 0.543 | -0.01 | 0.005 | 0.039 | 0.013 | -0.044 | -0.139 | -0.287 | 1.79 | 63.401 |
PC5 | 0.266 | 0.135 | -0.212 | 0.739 | 0.064 | 0.037 | 0.441 | 0.638 | -0.212 | 1.539 | 68.365 |
PC6 | -0.249 | 0.203 | 0.349 | -0.237 | 0.123 | 0.268 | 0.127 | -0.059 | 0.204 | 1.344 | 72.701 |
表1 腾冲地块成矿元素正交旋转主成分矩阵
Table 1 Principle component orthogonal rotation matrix of ore-forming elements in the Tengchong Block
主成分 | Ag | As | Au | B | Ba | Bi | Cd | Co | Cr | Cu | F |
---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | 0.115 | 0.434 | 0.356 | 0.234 | 0.125 | -0.216 | 0.375 | 0.904 | 0.879 | 0.779 | 0.162 |
PC2 | 0.167 | 0.249 | 0.146 | 0.379 | -0.013 | 0.73 | 0.127 | -0.116 | -0.089 | 0.076 | 0.669 |
PC3 | 0.232 | 0.503 | 0.214 | 0.687 | -0.053 | 0.024 | 0.241 | 0.191 | 0.259 | 0.327 | 0.007 |
PC4 | 0.773 | 0.391 | 0.215 | 0.038 | -0.002 | 0.344 | 0.708 | 0.049 | -0.003 | 0.253 | 0.025 |
PC5 | -0.192 | -0.289 | -0.182 | -0.243 | 0.035 | -0.078 | 0.039 | 0.076 | -0.085 | -0.086 | 0.125 |
PC6 | -0.073 | -0.249 | -0.319 | -0.055 | 0.879 | -0.052 | -0.147 | 0.031 | -0.053 | -0.136 | 0.217 |
主成分 | Mn | Mo | Nb | Ni | Pb | Sb | Sn | Sr | Ti | V | W |
PC1 | 0.746 | 0.35 | -0.118 | 0.822 | -0.207 | 0.491 | -0.327 | 0.165 | 0.88 | 0.894 | -0.209 |
PC2 | -0.067 | 0.07 | 0.435 | -0.002 | 0.299 | 0.052 | 0.754 | -0.083 | -0.14 | -0.133 | 0.785 |
PC3 | -0.121 | -0.083 | -0.609 | 0.323 | -0.161 | 0.492 | -0.161 | -0.121 | -0.117 | 0.049 | 0.033 |
PC4 | 0.263 | 0.338 | -0.165 | 0.065 | 0.771 | 0.328 | 0.184 | -0.173 | -0.091 | -0.008 | 0.173 |
PC5 | 0.112 | -0.361 | -0.145 | -0.189 | -0.132 | -0.162 | -0.035 | 0.747 | -0.013 | 0.099 | -0.181 |
PC6 | 0.038 | -0.312 | -0.255 | -0.176 | 0.104 | -0.248 | -0.047 | 0.361 | 0.153 | 0.173 | -0.203 |
主成分 | Be | Zn | Al2O3 | CaO | Fe2O3 | K2O | MgO | Na2O | SiO2 | 特征值 | 方差累计 贡献/% |
PC1 | -0.043 | 0.645 | 0.087 | 0.429 | 0.923 | -0.715 | 0.628 | -0.414 | -0.54 | 10.123 | 32.656 |
PC2 | 0.305 | 0.117 | 0.183 | -0.198 | -0.072 | 0.325 | -0.147 | 0.203 | 0.109 | 4.859 | 48.331 |
PC3 | -0.426 | -0.167 | -0.705 | 0.151 | -0.061 | -0.286 | 0.38 | -0.228 | 0.321 | 2.882 | 57.627 |
PC4 | 0.043 | 0.543 | -0.01 | 0.005 | 0.039 | 0.013 | -0.044 | -0.139 | -0.287 | 1.79 | 63.401 |
PC5 | 0.266 | 0.135 | -0.212 | 0.739 | 0.064 | 0.037 | 0.441 | 0.638 | -0.212 | 1.539 | 68.365 |
PC6 | -0.249 | 0.203 | 0.349 | -0.237 | 0.123 | 0.268 | 0.127 | -0.059 | 0.204 | 1.344 | 72.701 |
图7 重建PC2[Bi-F-Sn-W]元素组合区域异常(第1~3特征空间)
Fig.7 Reconstructed PC2 score map of Bi-F-Sn-W (eigenvalues 1-3) showing regional geochemical anomalies in the Tengchong Block
块体 类型 | 块体 编号 | 块体面积/ km2 | 块体体积/ km3 | 异常平均 含量/10-6 | 成矿元素背 景值/10-6 | 剩余异常平均 含量/10-6 | 块体质量/109 t (按花岗岩密度 2.64 g/cm3) | 估算资源量/ 106 t |
---|---|---|---|---|---|---|---|---|
Sn地球 化学块体 | I-1 | 300 | 900 | 20.29 | 2 | 18.29 | 2376 | 43.46 |
I-2 | 176 | 528 | 76.24 | 74.24 | 1 393.92 | 103.48 | ||
I-3 | 196 | 588 | 10.64 | 8.64 | 1 552.32 | 13.41 | ||
I-4 | 136 | 408 | 24.8 | 22.8 | 1 077.12 | 24.56 | ||
I-5 | 156 | 468 | 476.46 | 474.46 | 1 235.52 | 586.20 | ||
I-6 | 288 | 864 | 7.9 | 5.9 | 2 280.96 | 13.46 | ||
I-7 | 288 | 864 | 15.65 | 13.65 | 2 280.96 | 31.14 | ||
I-8 | 76 | 228 | 21.61 | 19.61 | 601.92 | 11.80 | ||
合计 | 815.71 | |||||||
W地球 化学块体 | I-1 | 300 | 900 | 22.09 | 1 | 21.09 | 2376 | 50.11 |
I-2 | 176 | 528 | 6.7 | 5.7 | 1 393.92 | 7.95 | ||
I-3 | 196 | 588 | 5.52 | 4.52 | 1 552.32 | 7.02 | ||
I-4 | 136 | 408 | 6.52 | 5.52 | 1 077.12 | 5.95 | ||
I-5 | 156 | 468 | 13.33 | 12.33 | 1 235.52 | 15.23 | ||
I-6 | 288 | 864 | 4.1 | 3.1 | 2 280.96 | 7.07 | ||
I-7 | 288 | 864 | 3.68 | 2.68 | 2 280.96 | 6.11 | ||
I-8 | 76 | 228 | 10.79 | 8.79 | 601.92 | 5.29 | ||
合计 | 99.44 |
表2 腾冲地块Sn-W找矿靶区Sn-W金属量估算
Table 2 Assessment of Sn-W resource in Sn-W prospecting target areas, Tengchong Block
块体 类型 | 块体 编号 | 块体面积/ km2 | 块体体积/ km3 | 异常平均 含量/10-6 | 成矿元素背 景值/10-6 | 剩余异常平均 含量/10-6 | 块体质量/109 t (按花岗岩密度 2.64 g/cm3) | 估算资源量/ 106 t |
---|---|---|---|---|---|---|---|---|
Sn地球 化学块体 | I-1 | 300 | 900 | 20.29 | 2 | 18.29 | 2376 | 43.46 |
I-2 | 176 | 528 | 76.24 | 74.24 | 1 393.92 | 103.48 | ||
I-3 | 196 | 588 | 10.64 | 8.64 | 1 552.32 | 13.41 | ||
I-4 | 136 | 408 | 24.8 | 22.8 | 1 077.12 | 24.56 | ||
I-5 | 156 | 468 | 476.46 | 474.46 | 1 235.52 | 586.20 | ||
I-6 | 288 | 864 | 7.9 | 5.9 | 2 280.96 | 13.46 | ||
I-7 | 288 | 864 | 15.65 | 13.65 | 2 280.96 | 31.14 | ||
I-8 | 76 | 228 | 21.61 | 19.61 | 601.92 | 11.80 | ||
合计 | 815.71 | |||||||
W地球 化学块体 | I-1 | 300 | 900 | 22.09 | 1 | 21.09 | 2376 | 50.11 |
I-2 | 176 | 528 | 6.7 | 5.7 | 1 393.92 | 7.95 | ||
I-3 | 196 | 588 | 5.52 | 4.52 | 1 552.32 | 7.02 | ||
I-4 | 136 | 408 | 6.52 | 5.52 | 1 077.12 | 5.95 | ||
I-5 | 156 | 468 | 13.33 | 12.33 | 1 235.52 | 15.23 | ||
I-6 | 288 | 864 | 4.1 | 3.1 | 2 280.96 | 7.07 | ||
I-7 | 288 | 864 | 3.68 | 2.68 | 2 280.96 | 6.11 | ||
I-8 | 76 | 228 | 10.79 | 8.79 | 601.92 | 5.29 | ||
合计 | 99.44 |
块体 类型 | 块体 编号 | 块体面积/ km2 | 块体体积/ km3 | 异常平均 含量/10-6 | 成矿元素 背景值/10-6 | 剩余异常平均含量 (异常平均含量-景)/ 10-6 | 块体质量/109 t (花岗闪长岩密度 2.73 g/cm3) | 估算资源量/ 106 t |
---|---|---|---|---|---|---|---|---|
Pb地球 化学块体 | II-1 | 84 | 252 | 302.77 | 16 | 286.77 | 687.96 | 197.29 |
II-2 | 140 | 420 | 52.35 | 36.35 | 1 146.6 | 41.68 | ||
II-3 | 200 | 600 | 41.47 | 25.47 | 1 638 | 41.72 | ||
II-4 | 124 | 372 | 69.98 | 53.98 | 1 015.56 | 54.82 | ||
II-5 | 160 | 480 | 32.28 | 16.28 | 1 310.4 | 21.33 | ||
II-6 | 380 | 1 140 | 36.42 | 20.42 | 3 112.2 | 63.55 | ||
II-7 | 116 | 348 | 159.37 | 143.37 | 950.04 | 136.21 | ||
合计 | 556.60 | |||||||
Zn地球 化学块体 | II-1 | 84 | 252 | 222.83 | 61 | 161.83 | 687.96 | 111.33 |
II-2 | 140 | 420 | 78.36 | 17.36 | 1 146.6 | 19.90 | ||
II-3 | 200 | 600 | 61.05 | 0.05 | 1 638 | 0.08 | ||
II-4 | 124 | 372 | 115.13 | 54.13 | 1 015.56 | 54.97 | ||
II-5 | 160 | 480 | 62.5 | 1.5 | 1 310.4 | 1.97 | ||
II-6 | 380 | 1140 | 70.21 | 9.21 | 3 112.2 | 28.66 | ||
II-7 | 116 | 348 | 79.59 | 18.59 | 950.04 | 17.66 | ||
合计 | 234.58 | |||||||
Ag地球 化学块体 | II-1 | 84 | 252 | 0.772 8 | 0.05 | 0.723 8 | 687.96 | 0.50 |
II-2 | 140 | 420 | 0.081 76 | 0.032 76 | 1 146.6 | 0.04 | ||
II-3 | 200 | 600 | 0.080 47 | 0.031 47 | 1 638 | 0.05 | ||
II-4 | 124 | 372 | 0.114 53 | 0.065 53 | 1 015.56 | 0.07 | ||
II-5 | 160 | 480 | 0.056 03 | 0.007 03 | 1 310.4 | 0.01 | ||
II-6 | 380 | 1 140 | 0.077 12 | 0.028 12 | 3 112.2 | 0.09 | ||
II-7 | 116 | 348 | 0.148 82 | 0.099 82 | 950.04 | 0.09 | ||
合计 | 0.85 |
表3 腾冲地块 Pb-Zn-Ag 找矿靶区Sn-W金属量估算
Table 3 Assessment of Sn-W resource in Pb-Zn-Ag prospecting target area, Tengchong Block
块体 类型 | 块体 编号 | 块体面积/ km2 | 块体体积/ km3 | 异常平均 含量/10-6 | 成矿元素 背景值/10-6 | 剩余异常平均含量 (异常平均含量-景)/ 10-6 | 块体质量/109 t (花岗闪长岩密度 2.73 g/cm3) | 估算资源量/ 106 t |
---|---|---|---|---|---|---|---|---|
Pb地球 化学块体 | II-1 | 84 | 252 | 302.77 | 16 | 286.77 | 687.96 | 197.29 |
II-2 | 140 | 420 | 52.35 | 36.35 | 1 146.6 | 41.68 | ||
II-3 | 200 | 600 | 41.47 | 25.47 | 1 638 | 41.72 | ||
II-4 | 124 | 372 | 69.98 | 53.98 | 1 015.56 | 54.82 | ||
II-5 | 160 | 480 | 32.28 | 16.28 | 1 310.4 | 21.33 | ||
II-6 | 380 | 1 140 | 36.42 | 20.42 | 3 112.2 | 63.55 | ||
II-7 | 116 | 348 | 159.37 | 143.37 | 950.04 | 136.21 | ||
合计 | 556.60 | |||||||
Zn地球 化学块体 | II-1 | 84 | 252 | 222.83 | 61 | 161.83 | 687.96 | 111.33 |
II-2 | 140 | 420 | 78.36 | 17.36 | 1 146.6 | 19.90 | ||
II-3 | 200 | 600 | 61.05 | 0.05 | 1 638 | 0.08 | ||
II-4 | 124 | 372 | 115.13 | 54.13 | 1 015.56 | 54.97 | ||
II-5 | 160 | 480 | 62.5 | 1.5 | 1 310.4 | 1.97 | ||
II-6 | 380 | 1140 | 70.21 | 9.21 | 3 112.2 | 28.66 | ||
II-7 | 116 | 348 | 79.59 | 18.59 | 950.04 | 17.66 | ||
合计 | 234.58 | |||||||
Ag地球 化学块体 | II-1 | 84 | 252 | 0.772 8 | 0.05 | 0.723 8 | 687.96 | 0.50 |
II-2 | 140 | 420 | 0.081 76 | 0.032 76 | 1 146.6 | 0.04 | ||
II-3 | 200 | 600 | 0.080 47 | 0.031 47 | 1 638 | 0.05 | ||
II-4 | 124 | 372 | 0.114 53 | 0.065 53 | 1 015.56 | 0.07 | ||
II-5 | 160 | 480 | 0.056 03 | 0.007 03 | 1 310.4 | 0.01 | ||
II-6 | 380 | 1 140 | 0.077 12 | 0.028 12 | 3 112.2 | 0.09 | ||
II-7 | 116 | 348 | 0.148 82 | 0.099 82 | 950.04 | 0.09 | ||
合计 | 0.85 |
[1] | 成秋明. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法[J]. 地球科学: 中国地质大学学报, 2006, 31(3): 337-348. |
[2] | CHENG Q M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007, 32(1/2): 314-324. |
[3] | MATHERON G. Principles of geostatistics[J]. Economic Geology, 1963, 58(8): 1246-1266. |
[4] | KRIGE D. Two-dimensional weighted moving average trend surfaces for ore-evaluation[J]. Journal of the South African Institute of Mining and Metallurgy, 1966, 66: 13-38. |
[5] | HOULDING S. Practical geostatistics: modeling and spatial analysis. Manual[M]. Berlin: Springer Science and Business Media, 2000. |
[6] | MUGGLESTONE M A, RENSHAW E. Detection of geological lineations on aerial photographs using two-dimensional spectral analysis[J]. Computers and Geosciences, 1998, 24(8): 771-784. |
[7] | AGTERBERG F P. Multifractal modeling of the sizes and grades of giant and supergiant deposits[J]. International Geology Review, 1995, 37(1): 1-8. |
[8] | AGTERBERG F. New applications of the model of de wijs in regional geochemistry[J]. Mathematical Geology, 2007, 39(1): 1-25. |
[9] | AGTERBERG F P. Mixtures of multiplicative cascade models in geochemistry[J]. Nonlinear Processes in Geophysics, 2007, 14(3): 201-209. |
[10] | AGTERBERG F P. Multifractal simulation of geochemical map patterns[M]// MERRIAM D F, DAVIS J C. Computer applications in the Earth sciences. Boston, MA: Springer US, 2001: 327-346. |
[11] | GRUNSKY E C, KJARSGAARD B A. Classification of distinct eruptive phases of the diamondiferous Star kimberlite, Saskatchewan, Canada based on statistical treatment of whole rock geochemical analyses[J]. Applied Geochemistry, 2008, 23(12): 3321-3336. |
[12] | HARRIS J R, GRUNSKY E C. Predictive lithological mapping of Canada’s North using Random Forest classification applied to geophysical and geochemical data[J]. Computers and Geosciences, 2015, 80: 9-25. |
[13] | DAVIS J C, SAMPSON R J. Statistics and data analysis in geology[M]. New York: Wiley, 1986. |
[14] | HUANG N E, WU Z H. A review on Hilbert-Huang transform: method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2): e2007rg000228. |
[15] | XIAO F, CHEN J G, AGTERBERG F, et al. Element behavior analysis and its implications for geochemical anomaly identification: a case study for porphyry Cu-Mo deposits in eastern Tianshan, China[J]. Journal of Geochemical Exploration, 2014, 145: 1-11. |
[16] | 谢学锦. 区域化探全国扫面工作方法的讨论[J]. 物探与化探, 1979, 3(1): 18-26. |
[17] | REIMANN C, FILZMOSER P. Normal and lognormal data distribution in geochemistry: death of a myth. consequences for the statistical treatment of geochemical and environmental data[J]. Environmental Geology, 2000, 39(9): 1001-1014. |
[18] | JAMES L, DOUGLAS C J, PAUL E. Analyzing multivariate data[M]. Pacific Grove, CA, USA: Thomson Brooks/Cole, 2003. |
[19] | CHEN Y Q, ZHAO B N, CHEN C, et al. Identification of ore-finding targets using the anomaly components of ore-forming element associations extracted by SVD and PCA in the Jiaodong gold cluster area, Eastern China[J]. Ore Geology Reviews, 2022, 144: 104866. |
[20] | 李庆谋, 成秋明. 分形奇异(特征)值分解方法与地球物理和地球化学异常重建[J]. 地球科学: 中国地质大学学报, 2004, 29(1): 109-118. |
[21] | CHEN Y Q, LIANG Z, ZHEN, L. Geochemical characteristics and zonation of primary halos of Pulang porphyry copper deposit, Northwestern Yunnan Province, Southwestern China[J]. Journal of China University of Geosciences, 2008, 19(4): 371-377. |
[22] | 陈永清, 张生元, 夏庆霖, 等. 应用多重分形滤波技术提取致矿地球化学异常: 以西南 “三江” 南段Cu、Zn致矿异常提取为例[J]. 地球科学: 中国地质大学学报, 2006, 31(6): 861-866. |
[23] | BEHERA S, PANIGRAHI M K. Mineral prospectivity modelling using singularity mapping and multifractal analysis of stream sediment geochemical data from the auriferous Hutti-Maski schist belt, S. India[J]. Ore Geology Reviews, 2021, 131: 104029. |
[24] | FREIRE S L M, ULRYCH T J. Application of singular value decomposition to vertical seismic profiling[J]. Geophysics, 1988, 53(6): 778-785. |
[25] | LI Q M. GIS-based multifractal/inversion methods for feature extraction and applications in anomaly identification for mineral exploration[D]. Toronto: York University, 2005. |
[26] | 李庆谋, 刘少华. GIS环境下地球物理信号的奇异值分解、多维分形特征与应用[J]. 地球物理学进展, 2003, 18(1): 97-102. |
[27] | WANG Y J, LI S B, MA L Y, et al. Geochronological and geochemical constraints on the petrogenesis of Early Eocene metagabbroic rocks in Nabang (SW Yunnan) and its implications on the Neotethyan slab subduction[J]. Gondwana Research, 2015, 27(4): 1474-1486. |
[28] | CHEN Y Q, ZHANG L N, ZHAO B B. Identification of the anomaly component using BEMD combined with PCA from element concentrations in the Tengchong tin belt, SW China[J]. Geoscience Frontiers, 2019, 10(4): 1561-1576. |
[29] | GARDINER N J, SEARLE M P, MORLEY C K, et al. The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: tectonic and metallogenic implications[J]. Gondwana Research, 2018, 62: 27-60. |
[30] | GARDINER N J, SEARLE M P, MORLEY C K, et al. The closure of palaeo-Tethys in eastern Myanmar and northern Thailand: new insights from zircon U-Pb and Hf isotope data[J]. Gondwana Research, 2016, 39: 401-422. |
[31] | MITCHELL A, CHUNG S L, OO T, et al. Zircon U-Pb ages in Myanmar: magmatic-metamorphic events and the closure of a neo-Tethys ocean?[J]. Journal of Asian Earth Sciences, 2012, 56: 1-23. |
[32] | RIDD M F. East flank of the Sibumasu block in NW Thailand and Myanmar and its possible northward continuation into Yunnan: a review and suggested tectono-stratigraphic interpretation[J]. Journal of Asian Earth Sciences, 2015, 104: 160-174. |
[33] | XU Y G, YANG Q J, LAN J B, et al. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: constraints from zircon U-Pb ages and Hf isotopes[J]. Journal of Asian Earth Sciences, 2012, 53: 151-175. |
[34] | MORLEY C K. Late Cretaceous-Early Palaeogene tectonic development of SE Asia[J]. Earth-Science Reviews, 2012, 115(1/2): 37-75. |
[35] | CAO H W, ZHANG S T, LIN J Z, et al. Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong County, western Yunnan (China): regional tectonic implications[J]. Journal of Asian Earth Sciences, 2014, 81: 142-152. |
[36] | 陈吉琛, 林文信, 陈良忠. 腾冲—梁河地区含锡花岗岩序列—单元研究[J]. 云南地质, 1991, 10(3): 241-289. |
[37] | 罗君烈. 滇西锡矿的花岗岩类及其成矿作用[J]. 矿床地质, 1991, 10(1): 81-96, 80. |
[38] | AHRENS L H. The lognormal distribution of the elements (2)[J]. Geochimica et Cosmochimica Acta, 1954, 6(2/3): 121-131. |
[39] | AHRENS L H. The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary)[J]. Geochimica et Cosmochimica Acta, 1954, 5(2): 49-73. |
[40] | AGTERBERG F. Pareto-lognormal modeling of known and unknown metal resources[J]. Natural Resources Research, 2017, 26(1): 3-20. |
[41] | AGTERBERG F. Aspects of regional and worldwide mineral resource prediction[J]. Journal of Earth Science, 2021, 32(2): 279-287. |
[42] | AGTERBERG F P, CHENG Q M. Introduction to special issue on “fractals and multifractals”[J]. Computers and Geosciences, 1999, 25(9): 947-948. |
[43] | ZUO R G, XIA Q L, WANG H C. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization[J]. Applied Geochemistry, 2013, 28: 202-211. |
[44] | 黄静宁, 赵鹏大. 滇东地区深层次Pt-Cu-Au矿化异常定量提取与评价[J]. 地球科学: 中国地质大学学报, 2009, 34(2): 365-374. |
[45] | CARRANZA E J M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values[J]. Journal of Geochemical Exploration, 2011, 110(2): 167-185. |
[46] | CARRANZA E J M, LABORTE A G. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forests algorithm[J]. Ore Geology Reviews, 2015, 71: 777-787. |
[47] | CARRANZA E J M, VAN RUITENBEEK F J A, HECKER C, et al. Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain[J]. International Journal of Applied Earth Observation and Geoinformation, 2008, 10(3): 374-387. |
[48] | AITCHISON J. The statistical analysis of compositional data[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1982, 44(2): 139-160. |
[49] | AITCHISON J, GREENACRE M. Biplots of compositional data[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 2002, 51(4): 375-392. |
[50] | ZHENG A Y, CHEN C, CHEN Y Q, et al. Application of SVD combined with PCA in delineation and evaluation of ore-prospecting targets in the Gejiu tin polymetallic cluster region, SW China[J]. Ore Geology Reviews, 2023, 160: 105571. |
[51] | XIE X J, LIU D W, XIANG Y C, et al. Geochemical blocks for predicting large ore deposits: concept and methodology[J]. Journal of Geochemical Exploration, 2004, 84(2): 77-91. |
[52] | 赵振华. 微量元素地球化学[J]. 地球科学进展, 1992, 7(5): 65-66. |
[53] | 陈永清, 黄静宁, ZHAI X M, 等. 多尺度地球化学勘查聚焦找矿靶区: 以滇东Pt地球化学省勘查研究为例[J]. 中国科学D辑: 地球科学, 2009, 39(10): 1456-1465. |
[1] | 陈永清, 郑澳月, 费金娜, 赵婕, 赵鹏大. 应用二维经验模分解(2D-EMD)-主成分分析(PCA)组合模型定量圈定与评价胶东金与关键金属找矿靶区[J]. 地学前缘, 2025, 32(1): 266-282. |
[2] | 宁文婧, 谢先明, 严丽萍. 清远市清城区土壤中重金属的空间分布、来源解析和健康评价:基于PCA和PMF模型的对比[J]. 地学前缘, 2023, 30(4): 470-484. |
[3] | 奚小环, 李敏, 刘荣梅, 刘长征, 许光, 任智斌. 区域成矿地球化学理论体系问题研究:兼论沱沱河区域化探异常集群[J]. 地学前缘, 2015, 22(5): 196-214. |
[4] | 陈永清, 卢映祥, 赵红娟, 程志中, 蒋成兴, 刘正尚. 滇西腾冲地块小场钼矿化花岗岩的锆石SHRIMP U-Pb定年、地球化学及其构造意义[J]. 地学前缘, 2013, 20(5): 1-14. |
[5] | 刘雪敏,王学求,徐善法,迟清华. 华南陆块铜的地球化学块体与成矿省的关系[J]. 地学前缘, 2012, 19(3): 59-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||