地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 497-507.DOI: 10.13745/j.esf.sf.2022.1.22
• 非主题来稿选登 • 上一篇
张玉叶1,2(), 何江涛2,*(
), 邓璐2, 邹华2, 张金刚2, 杨美萍2
收稿日期:
2021-07-12
修回日期:
2021-11-29
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
何江涛
作者简介:
张玉叶(1995—),女,硕士研究生,主要研究方向为地下水环境。E-mail: yuye179@126.com
基金资助:
ZHANG Yuye1,2(), HE Jiangtao2,*(
), DENG Lu2, ZOU Hua2, ZHANG Jingang2, YANG Meiping2
Received:
2021-07-12
Revised:
2021-11-29
Online:
2022-09-25
Published:
2022-08-24
Contact:
HE Jiangtao
摘要:
近年来水环境中硝酸盐污染与抗生素污染的现象引起了人们的广泛关注,但目前复合抗生素污染对反硝化过程产生的影响并不明确。本研究以水环境中检出率较高的诺氟沙星和洛美沙星为代表进行模拟实验,探究ng级的两种抗生素复合对反硝化过程的影响。硝氮和亚硝氮的降解情况表明,实验浓度条件下,洛美沙星、诺氟沙星单用与二者联用对水环境中的反硝化过程存在不同的抑制作用。洛美沙星单用前期轻微促进反硝化,后期表现抑制作用,而诺氟沙星单用始终表现出抑制作用;洛美沙星和诺氟沙星联用抑制作用小于诺氟沙星单用,联用表现为拮抗作用。各体系的抑制作用大小为诺氟沙星>诺氟沙星+洛美沙星>洛美沙星。该模拟试验条件虽与实际条件有所差异,但在一定程度上表明抗生素联用表现出拮抗作用与反硝化体系内微生物数量、活性,反硝化酶活性,反硝化菌优势物种Achromobacter xylosoxidans、Acinetobacter baumannii、Pseudomonas sp.KY及功能基因nosZ和aac的丰度的变化有关。抗生素加入反硝化体系后会产生持续的影响,随反应时间的增加,反硝化菌逐渐适应有低浓度抗生素存在的环境,喹诺酮类抗生素耐药基因数量增加,微生物的耐药性增强,反硝化菌在数量和活性、反硝化酶活性及微生物群落层面均有回升趋势。
中图分类号:
张玉叶, 何江涛, 邓璐, 邹华, 张金刚, 杨美萍. 洛美沙星和诺氟沙星对水中生物反硝化过程的影响模拟试验[J]. 地学前缘, 2022, 29(5): 497-507.
ZHANG Yuye, HE Jiangtao, DENG Lu, ZOU Hua, ZHANG Jingang, YANG Meiping. Effects of lomefloxacin and norfloxacin on the biological water denitrification process—an experimental study[J]. Earth Science Frontiers, 2022, 29(5): 497-507.
组别 | 硝氮 | 亚硝氮 | ||||
---|---|---|---|---|---|---|
降解时间/d | 作用效果 | 降解时间/d | 作用效果 | |||
空白周期V | 各组 | 4 | — | 0 | — | |
投加抗生素VI | Blank | 4 | — | 0 | — | |
159 ng/L LOM | 6 | 前期轻微促进,后期抑制 | 0 | — | ||
509 ng/L NOR | 10 | 明显抑制 | 10 | 抑制 | ||
LOM+NOR | 8 | 抑制作用减弱 | 7 | 轻微抑制 | ||
恢复期VII | Blank | 4 | — | 0 | — | |
159 ng/L LOM | 5 | 抑制作用 | 0 | — | ||
509 ng/L NOR | 7 | 抑制作用 | 0 | — | ||
LOM+NOR | 7 | 抑制作用 | 0 | — |
表1 试验周期各反应体系硝氮、亚硝氮降解情况统计表
Table 1 Statistical table of Nitrate and Nitrite degradation in each reaction system during the test period
组别 | 硝氮 | 亚硝氮 | ||||
---|---|---|---|---|---|---|
降解时间/d | 作用效果 | 降解时间/d | 作用效果 | |||
空白周期V | 各组 | 4 | — | 0 | — | |
投加抗生素VI | Blank | 4 | — | 0 | — | |
159 ng/L LOM | 6 | 前期轻微促进,后期抑制 | 0 | — | ||
509 ng/L NOR | 10 | 明显抑制 | 10 | 抑制 | ||
LOM+NOR | 8 | 抑制作用减弱 | 7 | 轻微抑制 | ||
恢复期VII | Blank | 4 | — | 0 | — | |
159 ng/L LOM | 5 | 抑制作用 | 0 | — | ||
509 ng/L NOR | 7 | 抑制作用 | 0 | — | ||
LOM+NOR | 7 | 抑制作用 | 0 | — |
组别 | N2含量/% | NO含量/10-6 | N2O含量/10-6 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0d | 8d | 变化量 | 0d | 8d | 变化量 | 0d | 8d | 变化量 | ||||||||||||
Blank | 69.43 | 77.63 | 8.20 | 778.0 | 840.2 | 62.2 | 44.1 | 127.0 | 82.9 | |||||||||||
LOM | 72.20 | 80.96 | 8.76 | 761.1 | 817.9 | 56.8 | 66.6 | 136.5 | 69.9 | |||||||||||
NOR | 71.46 | 73.56 | 2.10 | 774.0 | 817.3 | 43.3 | 72.6 | 123.1 | 50.5 | |||||||||||
LOM+NOR | 68.83 | 75.44 | 6.61 | 763.9 | 812.7 | 48.8 | 65.1 | 136.6 | 71.5 |
表2 投加抗生素期(0天和8天)时体系内气体含量变化
Table 2 Changes of gas content in the system during antibiotic administration period (0 days) and (8 days)
组别 | N2含量/% | NO含量/10-6 | N2O含量/10-6 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0d | 8d | 变化量 | 0d | 8d | 变化量 | 0d | 8d | 变化量 | ||||||||||||
Blank | 69.43 | 77.63 | 8.20 | 778.0 | 840.2 | 62.2 | 44.1 | 127.0 | 82.9 | |||||||||||
LOM | 72.20 | 80.96 | 8.76 | 761.1 | 817.9 | 56.8 | 66.6 | 136.5 | 69.9 | |||||||||||
NOR | 71.46 | 73.56 | 2.10 | 774.0 | 817.3 | 43.3 | 72.6 | 123.1 | 50.5 | |||||||||||
LOM+NOR | 68.83 | 75.44 | 6.61 | 763.9 | 812.7 | 48.8 | 65.1 | 136.6 | 71.5 |
图4 正式试验各体系内反硝化菌OD490、OD600的变化(误差棒为3个平行样测试结果的标准差)
Fig.4 Changes of Denitrifying bacteria OD490 and OD600 in formal tests of each system (Error bar is the standard deviation of test results of three parallel samples)
图5 第VI周期各体系内反硝化菌活性与数量的抑制率(误差棒为3个平行样测试结果的标准差)
Fig.5 Inhibition rate of denitrifying bacteria activity and quantity in each system in the VI cycle (Error bar is the standard deviation of test results of three parallel samples)
图6 正式试验各体系内OTU数量变化 注:空白周期(V)、投加抗生素期(VI)、恢复期(VII)中Blank、LOM(L)、NOR(N)、LOM+NOR(LN)体系内的OTU数量,如V-L表示空白周期LOM体系的OTU数量,下同。
Fig.6 Variation of OTU quantity in each system in formal test
[1] |
AN Y L, QIN X M. Effects of sulfamethoxazole on the denitrifying process in anoxic activated sludge and the responses of denitrifying microorganisms[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2018, 78(5/6): 1228-1236.
DOI URL |
[2] |
CONKLE J L, WHITE J R. An initial screening of antibiotic effects on microbial respiration in wetland soils[J]. Journal of Environmental Science and Health, Part A, 2012, 47(10): 1381-1390.
DOI URL |
[3] |
UNDERWOOD J C, HARVEY R W, METGE D W, et al. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment[J]. Environmental Science and Technology, 2011, 45(7): 3096-3101.
DOI URL |
[4] |
D'ALESSIO M, DURSO L M, MILLER D N, et al. Environmental fate and microbial effects of monensin, lincomycin, and sulfamethazine residues in soil[J]. Environmental Pollution, 2019, 246: 60-68.
DOI URL |
[5] |
SCHAIDER L A, RUDEL R A, ACKERMAN J M, et al. Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer[J]. Science of the Total Environment, 2014, 468/469: 384-393.
DOI URL |
[6] |
YAO L L, WANG Y X, TONG L, et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: a case study at Jianghan Plain, central China[J]. Ecotoxicology and Environmental Safety, 2017, 135: 236-242.
DOI URL |
[7] |
MA Y P, LI M, WU M M, et al. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge[J]. Science of the Total Environment, 2015, 518/519: 498-506.
DOI URL |
[8] |
ZOU H, HE J T, HE B N, et al. Sensitivity assessment of denitrifying bacteria against typical antibiotics in groundwater[J]. Environmental Science Processes and Impacts, 2019, 21(9): 1570-1579.
DOI URL |
[9] |
CHEN L, LANG H, LIU F, et al. Presence of antibiotics in shallow groundwater in the northern and southwestern regions of China[J]. Ground Water, 2018, 56(3): 451-457.
DOI URL |
[10] |
CHEN H B, ZHOU Y F, HU X Y, et al. Effects of chlortetracycline on biological nutrient removal from wastewater[J]. Science of the Total Environment, 2019, 647: 268-274.
DOI URL |
[11] |
LU T, ZHU Y C, KE M J, et al. Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin[J]. Environment International, 2019, 126: 268-278.
DOI URL |
[12] |
SU H C, HU X J, XU Y, et al. Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China[J]. Environment International, 2018, 119: 327-323.
DOI URL |
[13] |
LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review[J]. Environmental Pollution, 2017, 223: 161-169.
DOI URL |
[14] |
YAN C X, YANG Y, ZHOU J L, et al. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment[J]. Environmental Pollution, 2013, 175: 22-29.
DOI URL |
[15] |
HOU L J, YIN G Y, MIN L, et al. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments[J]. Environmental Science and Technology, 2015, 49(1): 326-333.
DOI URL |
[16] |
SHAN J, YANG P P, RAHMAN M M, et al. Tetracycline and sulfamethazine alter dissimilatory nitrate reduction processes and increase N2O release in rice fields[J]. Environmental Pollution, 2018, 242: 788-796.
DOI URL |
[17] |
YI K X, WANG D B, QI Y, et al. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater[J]. Science of the Total Environment, 2017, 605/606: 368-375.
DOI URL |
[18] |
CHEN A, CHEN Y, DING C, et al. Effects of tetracycline on simultaneous biological wastewater nitrogen and phosphorus removal[J]. RSC Advances, 2015, 5(73): 59326-59334.
DOI URL |
[19] |
CHEN Z Q, WU Y Q, WEN Q X, et al. Insight into the effects of sulfamethoxazole and norfloxacin on nitrogen transformation functional genes during swine manure composting[J]. Bioresource Technology, 2020, 297: 122463.
DOI URL |
[20] | 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法 (第四版)[M]. 北京: 中国环境科学出版社, 2002. |
[21] |
DEVRIES S L, ZHANG P F. Antibiotics and the terrestrial nitrogen cycle: a review[J]. Current Pollution Reports. 2016, 2(1): 51-67.
DOI URL |
[22] |
DING C, HE J Z. Effect of antibiotics in the environment on microbial populations[J]. Applied Microbiology and Biotechnology, 2010, 87(3): 925-941.
DOI URL |
[23] |
YIN G Y, HOU L J, LIU M, et al. Effects of multiple antibiotics exposure on denitrification process in the Yangtze Estuary sediments[J]. Chemosphere, 2017, 171: 118-125.
DOI URL |
[24] |
ROOSE-AMSALEG C, LAVERMAN A M. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes[J]. Environmental Science and Pollution Research, 2016, 23(5): 4000-4012.
DOI URL |
[25] |
BANERJEE S, D'ANGELO E. Livestock antibiotic effects on nitrification, denitrification, and microbial community composition in soils[J]. Open Journal of Soil Science, 2013, 3(5): 203-212.
DOI URL |
[26] | 邓璐, 何江涛, 邹华, 等. 洛美沙星对水中反硝化过程的影响模拟试验[J]. 中国环境科学, 2020, 40(7): 2934-2942. |
[27] | 陈淋鹏, 黄福杨, 张冲, 等. 诺氟沙星对地下水中反硝化过程的影响: 反硝化酶活性的证据[J]. 环境科学学报, 2020, 40(7): 2496-2501. |
[28] |
ZOU H, HE J T, GUAN X Y, et al. Microbial responses underlying the denitrification kinetic shifting exposed to ng/L- and μg/L-level lomefloxacin in groundwater[J]. Journal of Hazardous Materials, 2021, 417: 126093.
DOI URL |
[29] |
SUN M M, YE M, LIU K, et al. Dynamic interplay between microbial denitrification and antibiotic resistance under enhanced anoxic denitrification condition in soil[J]. Environmental Pollution, 2017, 222: 583-591.
DOI URL |
[30] | 邹华. 典型抗生素对地下水反硝化过程的抑制效应研究[D]. 北京: 中国地质大学(北京), 2020. |
[31] | AHMAD M, VITHANAGE M, KIM K, et al. Inhibitory effect of veterinary antibiotics on denitrification in groundwater: a microcosm approach[J]. The Scientific World Journal, 2014: 879831. |
[32] |
BERKS B C, FERGUSON S J, MOIR J W B, et al. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions[J]. Biochimica et Biophysica Acta-Bioenergetics, 1995, 1232(3): 97-173.
DOI URL |
[33] |
BARNARD R, BARTHES L, LE ROUX X, et al. Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO2[J]. New Phytologist, 2004, 162(2): 365-376.
DOI URL |
[34] |
RAHMAN M M, SHAN J, YANG P P, et al. Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes(ARGs), anammox and denitrification rates in paddy soils[J]. Environmental Pollution, 2018, 240: 368-377.
DOI URL |
[35] | 吴伟, 刘道玉, 瞿建宏, 等. 脱氮副球菌硝酸盐/亚硝酸盐还原酶的活性变化及对养殖水体中无机氮素的转化[J]. 农业环境科学学报, 2013, 32(6): 1244-1252. |
[36] | 邹高龙, 刘志文, 董洁平, 等. 环丙沙星在污水处理过程中的迁移转化及对污水生物处理的影响[J]. 环境科学学报, 2019, 39(2): 308-317. |
[37] |
MURRAY R E, KNOWLES R. Chloramphenicol inhibition of denitrifying enzyme activity in two agricultural soils[J]. Applied and Environmental Microbiology, 1999, 65(8): 3487-3492.
DOI URL |
[38] | 代莎, 李彭, 彭五庆, 等. 抗生素对耐药型反硝化菌反硝化过程及微生物群落结构的影响[J]. 环境科学, 2020, 41(3): 1401-1408. |
[39] | 阮晓慧, 钱雅洁, 薛罡, 等. 四环素抗生素对污泥中四环素抗性基因丰度和表达水平的作用影响[J]. 环境科学, 2020, 41(2): 823-830. |
[40] |
ISTVAN E S, DEISENHOFER J. Structural mechanism for statin inhibition of HMG-CoA reductase[J]. Science, 2001, 292(5519): 1160-1164.
DOI URL |
[41] |
BÉGUÉJ P, BONNET-DELPON D. Recent advances (1995-2005) in fluorinated pharmaceuticals based on natural products[J]. Journal of Fluorine Chemistry, 2006, 127(8): 992-1012.
DOI URL |
[42] |
ISANBOR C, O'HAGAN D. Fluorine in medicinal chemistry: a review of anti-cancer agents[J]. Journal of Fluorine Chemistry, 2006, 127(3): 303-319.
DOI URL |
[43] |
KIRK K L. Fluorine in medicinal chemistry: recent therapeutic applications of fluorinated small molecules[J]. Journal of Fluorine Chemistry, 2006, 127(8): 1013-1029.
DOI URL |
[44] | 胡梅. 含氟基团对材料性能的影响研究[D]. 济南: 济南大学, 2019. |
[1] | 何佳汇, 毛海如, 薛洋, 廖福, 高柏, 饶志, 杨扬, 刘媛媛, 王广才. 赣抚平原东北部地下水硝酸盐浓度变化特征及成因[J]. 地学前缘, 2024, 31(3): 360-370. |
[2] | 梁凯旋, 刘菲, 张莉. 高氯酸盐自然衰减的柱实验研究[J]. 地学前缘, 2022, 29(3): 207-216. |
[3] | 郭华明 陈思 任燕. 反硝化菌的耐砷驯化及其对水铁矿吸附态砷迁移转化的影响[J]. 地学前缘, 2008, 15(5): 317-323. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||