地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 310-321.DOI: 10.13745/j.esf.sf.2021.9.58
谭宁1,2(), 张仲石3,4,5,*(
), 郭正堂1,6,7, 王会军5,8,9
收稿日期:
2021-08-15
修回日期:
2021-09-27
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
张仲石
作者简介:
谭 宁(1989—),女,博士,副研究员,主要从事古气候模拟研究工作。E-mail: ning.tan@mail.iggcas.ac.cn
基金资助:
TAN Ning1,2(), ZHANG Zhongshi3,4,5,*(
), GUO Zhengtang1,6,7, WANG Huijun5,8,9
Received:
2021-08-15
Revised:
2021-09-27
Online:
2022-09-25
Published:
2022-08-24
Contact:
ZHANG Zhongshi
摘要:
上新世早—中期是巴拿马海道关闭及印度尼西亚海道收缩的关键时期。目前,针对这两个海道关闭的气候效应已有不少研究,但多数研究关注巴拿马海道、洋流变化及其与北半球高纬冰盖发育的联系,缺乏两大热带海道关闭/收缩对东亚气候影响及机理的研究。我们基于挪威地球系统模型(NorESM-L)探讨了印尼海道收缩及巴拿马海道的浅关闭对东亚气候的影响。结果表明,热带海道的关闭/收缩加强了北太平洋的经向梯度,进一步导致夏季近地表气温在东亚北部降低,东亚南部升高;降水在长江流域至中国东海一线显著增加,但在东亚南部至西南部显著减少。冬季,近地表气温在东亚大陆地区升高,降水减少。上述变化主要由印尼海道的收缩导致,除冬季温度外,巴拿马海道浅关闭对东亚气候的影响较弱。此外,结合定性的记录-模拟对比,我们进一步揭示出热带海道的关闭/收缩可在一定程度上影响东亚气候在中上新世的转型,但不是主要驱动力。
中图分类号:
谭宁, 张仲石, 郭正堂, 王会军. 上新世热带海道变化影响东亚气候的模拟研究[J]. 地学前缘, 2022, 29(5): 310-321.
TAN Ning, ZHANG Zhongshi, GUO Zhengtang, WANG Huijun. Modeling study of the impact of tropical seaway changes on East Asian climate[J]. Earth Science Frontiers, 2022, 29(5): 310-321.
试验名 | 边界条件 | 印尼海道 | 巴拿马海道 | 试验时长 | 气候场 |
---|---|---|---|---|---|
Plio2 | 上新世暖期 | 现代 | 关闭 | 1 600年 | 最后100年 |
IndoCAS100 | 上新世暖期 | 打开(深度100 m) | 打开(深度100 m) | 1 600年 | 最后100年 |
IndoCAS100_half | 上新世暖期 | 打开(宽度减少50%,深度100 m) | 打开(宽度减少50%,深度100 m) | 1 600年 | 最后100年 |
Indo100 | 上新世暖期 | 打开(深度100 m) | 关闭 | 1 600年 | 最后100年 |
CAS100 | 上新世暖期 | 现代 | 打开(深度100 m) | 1 600年 | 最后100年 |
表1 试验设计
Table 1 Setting configurations for each experiment
试验名 | 边界条件 | 印尼海道 | 巴拿马海道 | 试验时长 | 气候场 |
---|---|---|---|---|---|
Plio2 | 上新世暖期 | 现代 | 关闭 | 1 600年 | 最后100年 |
IndoCAS100 | 上新世暖期 | 打开(深度100 m) | 打开(深度100 m) | 1 600年 | 最后100年 |
IndoCAS100_half | 上新世暖期 | 打开(宽度减少50%,深度100 m) | 打开(宽度减少50%,深度100 m) | 1 600年 | 最后100年 |
Indo100 | 上新世暖期 | 打开(深度100 m) | 关闭 | 1 600年 | 最后100年 |
CAS100 | 上新世暖期 | 现代 | 打开(深度100 m) | 1 600年 | 最后100年 |
图2 热带海道关闭导致的海表温度的年均异常 紫色等值线代表热带大洋暖池的范围,本文中暖池的定义为年均28 ℃的等温线。紫色虚线为Plio2的暖池范围,紫色实线为海道打开的暖池范围。
Fig.2 Changes to the mean annual sea surface temperature after the closure of the tropical seaways
图3 印尼海道收缩(a)及巴拿马海道关闭(b)对热带海道关闭导致海表温度异常(图2a)的相对贡献
Fig.3 The relative contribution of Indo constriction (a) and CAS closure (b) on the SST anomaly led by two tropical seaways' closure/constriction (Fig.2a)
图4 上新世暖期(a)、海道打开状态下(b)及海道关闭后(c)西太平洋表层洋流的变化
Fig.4 Western Pacific ocean currents above 100 m in Plio2 (a) and IndoCAS100 (b) and the current difference between Plio2 and IndoCAS100 (c)
图5 热带海道关闭(Plio2-IndoCAS100)对东亚气候的影响 a—c分别为年均、夏季、冬季的近地表气温异常;d—f中阴影部分为相应的降水异常,矢量箭头代表水汽垂直积分输送异常;g—i为海道打开状态下的水汽垂直积分输送场。
Fig.5 The climate anomalies between Plio2 and IndoCAS100
图6 热带海道关闭对东亚夏季气候影响的合成图(a)及31°N纬向垂直剖面风场图(b) a中包括海表温度异常(海洋区域阴影),西北太平洋副热带高压范围(5990位势米等值线,虚线为Plio2, 实线为IndoCAS100)、海洋ITCZ的变化(蓝色虚线为Plio2, 实线为IndoCAS100),500 hPa位势高度场的变化(虚线为Plio2, 实线为IndoCAS100)及Plio2情形下的东亚大槽位置(粉色实线)。此外,图中的绿色阴影为热带海道关闭后降水增加的显著区域;绿色矢量箭头为850hPa风场异常场。b中橙色为Plio2, 蓝色为IndoCAS100。
Fig.6 Composite plot for the SST anomaly, the ITCZ positions in the Pacific ocean and the major region where precipitation increases in East Asia (a) and longitude-altitude profiles of composed zonal and vertical wind at 31°N (b)
图7 热带海道关闭后夏季(a-c)、冬季(d-f)的近地表气温异常及单个海道的相对作用 注:图中点表示结果在99%置信标准下具有统计学意义的区域。
Fig.7 Seasonal SAT anomalies after the closure of tropical seaways (a: JJA, d: DJF) and the relative contribution of the Indo closure alone (b, e) and CAS closure alone (c, f) on the integrated seasonal anomaly
图8 热带海道关闭后夏季(a-c)和冬季(d-f)降水异常及单个海道的相对作用
Fig.8 Precipitation anomalies after the closure of tropical seaways and the relative contributions of each closure alone in summer (a-c) and winter (d-f)
序号 | 剖面/钻孔 | 经纬度/(°) | 文献 | 指标 | 指示意义 |
---|---|---|---|---|---|
1 | ODP1146 | 19.27/116.16 | [ | Rb/Sr,CIA,平均粒度 | 4~3 Ma夏季降水加强,冬季风加强 |
2 | 长江三角洲LZK1 | 31.2/121.5 | [ | CIA | 4~3 Ma夏季降水加强 |
3 | 日本西南部 | 34.45/136.3 | [ | 化学风化数据 | 4~3 Ma夏季降水加强 |
4 | 西和 | 34.04/105.23 | [ | 黄土粒度,化学风化数据 | 3.6 Ma后冬季风加强,夏季风减弱 |
5 | 蓝田 | 34/109 | [ | 古土壤δ13C | 3.6 Ma后呈变干趋势 |
6 | 西峰 | 35.53/107.58 | [ | 孢粉 | 4.5~3.7 Ma气候变干 |
西峰 | 35.53/107.58 | [ | 黄土粒度,化学风化数据 | 3.6 Ma后冬季风加强,夏季风减弱 | |
西峰 | 35.53/107.58 | [ | 黄土粒度 | 3.6 Ma后冬季风加强 | |
7 | 灵台 | 35.04/107.39 | [ | 古土壤δ13C | 4 Ma后呈变干趋势 |
灵台 | 35.04/107.39 | [ | 黄土粒度 | 4.7~4.3 Ma冬季风加强 | |
8 | 朝那 | 35.6/107.12 | [ | 生物标志物 | 3.8 Ma后夏季风、冬季风均加强 |
9 | 宝德 | 39/111 | [ | 古土壤δ13C | 3.6 Ma后呈变干趋势 |
10 | 酒西 | 39.47/97.32 | [ | 孢粉 | 3.6~3.3 Ma后呈变干趋势 |
11 | 鸭湖 | 37.4/94.3 | [ | 孢粉 | 3.6 Ma后呈变干趋势 |
12 | 白家嘴 | 35.53/107.27 | [ | 粉尘累积率 | 3.6 Ma后冬季风加强 |
13 | 佳县 | 38.16/110.5 | [ | 黄土粒度 | 3.6 Ma后冬季风加强 |
14 | ODP885/886 | 44.7/-168.3 | [ | 粉尘累积率 | 3.6 Ma后内陆干旱化加剧,西风急流加强 |
表2 中上新世东亚地区地质记录及其气候指示意义
Table 2 Reconstructed data and climatic implications located in East Asia applied in this study
序号 | 剖面/钻孔 | 经纬度/(°) | 文献 | 指标 | 指示意义 |
---|---|---|---|---|---|
1 | ODP1146 | 19.27/116.16 | [ | Rb/Sr,CIA,平均粒度 | 4~3 Ma夏季降水加强,冬季风加强 |
2 | 长江三角洲LZK1 | 31.2/121.5 | [ | CIA | 4~3 Ma夏季降水加强 |
3 | 日本西南部 | 34.45/136.3 | [ | 化学风化数据 | 4~3 Ma夏季降水加强 |
4 | 西和 | 34.04/105.23 | [ | 黄土粒度,化学风化数据 | 3.6 Ma后冬季风加强,夏季风减弱 |
5 | 蓝田 | 34/109 | [ | 古土壤δ13C | 3.6 Ma后呈变干趋势 |
6 | 西峰 | 35.53/107.58 | [ | 孢粉 | 4.5~3.7 Ma气候变干 |
西峰 | 35.53/107.58 | [ | 黄土粒度,化学风化数据 | 3.6 Ma后冬季风加强,夏季风减弱 | |
西峰 | 35.53/107.58 | [ | 黄土粒度 | 3.6 Ma后冬季风加强 | |
7 | 灵台 | 35.04/107.39 | [ | 古土壤δ13C | 4 Ma后呈变干趋势 |
灵台 | 35.04/107.39 | [ | 黄土粒度 | 4.7~4.3 Ma冬季风加强 | |
8 | 朝那 | 35.6/107.12 | [ | 生物标志物 | 3.8 Ma后夏季风、冬季风均加强 |
9 | 宝德 | 39/111 | [ | 古土壤δ13C | 3.6 Ma后呈变干趋势 |
10 | 酒西 | 39.47/97.32 | [ | 孢粉 | 3.6~3.3 Ma后呈变干趋势 |
11 | 鸭湖 | 37.4/94.3 | [ | 孢粉 | 3.6 Ma后呈变干趋势 |
12 | 白家嘴 | 35.53/107.27 | [ | 粉尘累积率 | 3.6 Ma后冬季风加强 |
13 | 佳县 | 38.16/110.5 | [ | 黄土粒度 | 3.6 Ma后冬季风加强 |
14 | ODP885/886 | 44.7/-168.3 | [ | 粉尘累积率 | 3.6 Ma后内陆干旱化加剧,西风急流加强 |
图9 热带海道关闭后,东亚夏季降水(a)及冬季风场(b)异常场及其与重建记录的对比 a中红色、蓝色点位分别代表重建记录中存在变湿、变干的趋势;b中橙色点位表示记录中风场加强的状态;图中点位的序号与表2一致。
Fig.9 Qualitative model-data comparison of East Asian climate change after the closure of CAS and Indo
[1] | MOLNAR P. Closing of the Central American Seaway and the Ice Age: a critical review[J]. Paleoceanography, 2008, 23(2): PA2201. |
[2] |
O'DEA A, LESSIOS H A, COATES A G, et al. Formation of the Isthmus of Panama[J]. Science Advances, 2016, 2(8): e1600883.
DOI URL |
[3] |
MONTES C, CARDONA A, JARAMILLO C, et al. Middle Miocene closure of the Central American Seaway[J]. Science, 2015, 348(6231): 226-229.
DOI URL |
[4] |
CANE M A, MOLNAR P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago[J]. Nature, 2001, 411(6834): 157-162.
DOI URL |
[5] |
KARAS C, NÜRNBERG D, GUPTA A K, et al. Mid-Pliocene climate change amplified by a switch in indonesian subsurface throughflow[J]. Nature Geoscience, 2009, 2(6): 434-438.
DOI URL |
[6] |
VERHOEVEN K, LOUWYE S, EIRÍKSSON J, et al. A new age model for the Pliocene-Pleistocene Tjörnes section on Iceland: its implication for the timing of North Atlantic-Pacific palaeoceanographic pathways[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(1/2): 33-52.
DOI URL |
[7] |
HORIKAWA K, MARTIN E E, BASAK C, et al. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean[J]. Nature Communications, 2015, 6: 7587.
DOI URL |
[8] |
KARAS C, NÜRNBERG D, BAHR A, et al. Pliocene oceanic seaways and global climate[J]. Scientific Reports, 2017, 7: 39842.
DOI URL |
[9] |
COATES A G, STALLARD R F. How old is the Isthmus of Panama?[J]. Bulletin of Marine Science, 2013, 89(4): 801-813.
DOI URL |
[10] | MARSHALL L G. Geochronology and land-mammal biochronology of the transamerican faunal interchange[M]// The Great American Biotic Interchange. Boston: Springer US, 1985. |
[11] |
HAUG G H, TIEDEMANN R, ZAHN R, et al. Role of Panama uplift on oceanic freshwater balance[J]. Geology, 2001, 29(3): 207.
DOI URL |
[12] |
TODD J A, JACKSON J B C, JOHNSON K G, et al. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene[J]. Proceedings Biological Sciences, 2002, 269(1491): 571-577.
DOI URL |
[13] | O'DEA A, JACKSON J. Environmental change drove macroevolution in cupuladriid bryozoans[J]. Proceedings Biological Sciences, 2009, 276(1673): 3629-3634. |
[14] |
JACKSON J B C, JUNG P, COATES A G, et al. Diversity and extinction of tropical American mollusks and emergence of the isthmus of Panama[J]. Science, 1993, 260(5114): 1624-1626.
DOI URL |
[15] |
ZHANG X, PRANGE M, STEPH S, et al. Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: insights from a multi-model study[J]. Earth and Planetary Science Letters, 2012, 317/318: 76-84.
DOI URL |
[16] |
KEIGWIN L. Isotopic paleoceanography of the caribbean and east Pacific: role of Panama uplift in late Neogene time[J]. Science, 1982, 217(4557): 350-353.
DOI URL |
[17] | KLOCKER A. Testing the influence of the Central American Seaway on orbitally forced Northern Hemisphere glaciation[J]. Geophysical Research Letters, 2005, 32(3): L03703. |
[18] |
LUNT D J, FOSTER G L, HAYWOOD A M, et al. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels[J]. Nature, 2008, 454(7208): 1102-1105.
DOI URL |
[19] |
TAN N, RAMSTEIN G, DUMAS C, et al. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate[J]. Earth and Planetary Science Letters, 2017, 472: 266-276.
DOI URL |
[20] |
NATHAN S A, LECKIE R M. Early history of the Western Pacific Warm Pool during the middle to late Miocene (-13.2-5.8 Ma): role of sea-level change and implications for equatorial circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(3/4): 140-159.
DOI URL |
[21] | MARTIN E E, SCHER H. A Nd isotopic study of southern sourced waters and Indonesian Throughflow at intermediate depths in the Cenozoic Indian Ocean[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9): Q09N02. |
[22] | 李铁刚, 熊志方, 贾奇. 晚中新世以来印度洋-太平洋暖池水体交换过程及其气候效应[J]. 海洋科学进展, 2020, 38(3): 377-389. |
[23] |
SRINIVASAN M S, SINHA D K. Early Pliocene closing of the Indonesian Seaway: evidence from north-east Indian Ocean and tropical Pacific deep sea cores[J]. Journal of Asian Earth Sciences, 1998, 16(1): 29-44.
DOI URL |
[24] |
HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431.
DOI URL |
[25] | 俞永强, 周祖翼, 张学洪. 印度尼西亚海道关闭对气候的影响: 一个数值模拟研究[J]. 科学通报, 2003, 48(S2): 60-64. |
[26] |
RODGERS K B, LATIF M, LEGUTKE S. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian throughflow[J]. Geophysical Research Letters, 2000, 27(18): 2941-2944.
DOI URL |
[27] | GALLAGHER S J, WALLACE M W, LI C L, et al. Neogene history of the West Pacific Warm Pool, Kuroshio and Leeuwin currents[J]. Paleoceanography, 2009, 24(1): PA1206. |
[28] |
BRIERLEY C M, FEDOROV A V. Comparing the impacts of Miocene-Pliocene changes in inter-ocean gateways on climate: central American Seaway, Bering Strait, and Indonesia[J]. Earth and Planetary Science Letters, 2016, 444: 116-130.
DOI URL |
[29] |
KREBS U, PARK W, SCHNEIDER B. Pliocene aridification of Australia caused by tectonically induced weakening of the Indonesian throughflow[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309(1/2): 111-117.
DOI URL |
[30] |
MOTOI T, CHAN W L. Colder subarctic pacific with larger sea ice caused by closure of the Central American Seaway and its influence on the East Asian monsoon: a climate model study[J]. Geological Society, London, Special Publications, 2010, 342(1): 265-277.
DOI URL |
[31] |
HAUG G H, TIEDEMANN R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation[J]. Nature, 1998, 393(6686): 673-676.
DOI URL |
[32] |
SEPULCHRE P, ARSOUZE T, DONNADIEU Y, et al. Consequences of shoaling of the Central American Seaway determined from modeling Nd isotopes[J]. Paleoceanography, 2014, 29(3): 176-189.
DOI URL |
[33] | 张仲石, 李香钰, 燕青, 等. 上新世海道变化对中国气候的影响[J]. 第四纪研究, 2016, 36(3): 768-774. |
[34] |
GE J Y, DAI Y, ZHANG Z S, et al. Major changes in East Asian climate in the mid-Pliocene: triggered by the uplift of the Tibetan Plateau or global cooling?[J]. Journal of Asian Earth Sciences, 2013, 69: 48-59.
DOI URL |
[35] |
GUO Z T, PENG S Z, HAO Q Z, et al. Late Miocene-Pliocene development of Asian aridification as recorded in the Red-Earth Formation in northern China[J]. Global and Planetary Change, 2004, 41(3/4): 135-145.
DOI URL |
[36] |
AN Z S, KUTZBACH J E, PRELL W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.
DOI URL |
[37] |
BENTSEN M, BETHKE I, DEBERNARD J B, et al. The Norwegian Earth System Model, NorESM1-M-Part 1: description and basic evaluation of the physical climate[J]. Geoscientific Model Development, 2013, 6(3): 687-720.
DOI URL |
[38] |
ZHANG Z S, NISANCIOGLU K, BENTSEN M, et al. Pre-industrial and mid-Pliocene simulations with NorESM-L[J]. Geoscientific Model Development, 2012, 5(2): 523-533.
DOI URL |
[39] | DAI G W, ZHANG Z S, OTTERÅ O H, et al. A modeling study of the tripole pattern of East China precipitation over the past 425 ka[J]. Journal of Geophysical Research Atmospheres, 2021, 126(7): e2020JD033513. |
[40] |
HU D, WU L, CAI W, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299-308.
DOI URL |
[41] |
DOWSETT H, DOLAN A, ROWLEY D, et al. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction[J]. Climate of the Past, 2016, 12(7): 1519-1538.
DOI URL |
[42] |
LI X Y, GUO C C, ZHANG Z S, et al. PlioMIP2 simulations with NorESM-L and NorESM1-F[J]. Climate of the Past, 2020, 16(1): 183-197.
DOI URL |
[43] |
LUNT D J, HAYWOOD A M, SCHMIDT G A, et al. On the causes of mid-Pliocene warmth and polar amplification[J]. Earth and Planetary Science Letters, 2012, 321/322: 128-138.
DOI URL |
[44] |
KASPI Y, SCHNEIDER T. Winter cold of eastern continental boundaries induced by warm ocean waters[J]. Nature, 2011, 471(7340): 621-624.
DOI URL |
[45] |
REA D K, SNOECKX H, JOSEPH L H. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224.
DOI URL |
[46] | LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003. |
[47] |
CLOTTEN C, STEIN R, FAHL K, et al. On the causes of Arctic sea ice in the warm Early Pliocene[J]. Scientific Reports, 2019, 9: 989.
DOI URL |
[48] |
JANSEN E, SJØHOLM J. Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea[J]. Nature, 1991, 349(6310): 600-603.
DOI URL |
[49] |
WAN S M, CLIFT P D, LI A C, et al. Geochemical records in the South China Sea: implications for East Asian summer monsoon evolution over the last 20 Ma[J]. Geological Society, London, Special Publications, 2010, 342(1): 245-263.
DOI URL |
[50] | 谢建磊. 长江三角洲地区上新世以来主要气候转型事件的沉积响应研究[D]. 武汉: 中国地质大学(武汉), 2017. |
[51] |
HATANO N, YOSHIDA K, ADACHI Y, et al. Intense chemical weathering in southwest Japan during the Pliocene warm period[J]. Journal of Asian Earth Sciences, 2019, 184: 103971.
DOI URL |
[52] |
SUAREZ M B, PASSEY B H, KAAKINEN A. Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene[J]. Geology, 2011, 39(12): 1151-1154.
DOI URL |
[53] |
WANG L, LÜ H Y, WU N Q, et al. Palynological evidence for Late Miocene-Pliocene vegetation evolution recorded in the red clay sequence of the central Chinese Loess Plateau and implication for palaeoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(1): 118-128.
DOI URL |
[54] |
DING Z L, YANG S L, SUN J M, et al. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 99-109.
DOI URL |
[55] |
SUN Y B, LU H Y, AN Z S. Grain size of loess, palaeosol and Red Clay deposits on the Chinese Loess Plateau: significance for understanding pedogenic alteration and palaeomonsoon evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(1): 129-138.
DOI URL |
[56] |
BAI Y, FANG X M, NIE J S, et al. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(1/2): 161-169.
DOI URL |
[57] |
MA Y Z, FANG X M, LI J J, et al. The vegetation and climate change during Neocene and Early Quaternary in Jiuxi Basin, China[J]. Science in China Series D: Earth Sciences, 2005, 48(5): 676.
DOI URL |
[58] |
WU F L, FANG X M, HERRMANN M, et al. Extended drought in the interior of Central Asia since the Pliocene reconstructed from sporopollen records[J]. Global and Planetary Change, 2011, 76(1/2): 16-21.
DOI URL |
[59] |
QIANG X K, LI Z X, POWELL C M, et al. Magnetostratigraphic record of the late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet[J]. Earth and Planetary Science Letters, 2001, 187(1/2): 83-93.
DOI URL |
[1] | 李佩, 张春霞, 罗浩, 刘志成, 高战武. 青藏高原东南缘昭通盆地晚中新世到上新世古环境演化过程[J]. 地学前缘, 2024, 31(4): 326-339. |
[2] | 杨佳毅, 蒋富清, 颜钰, 郑昊, 常凤鸣. 上新世以来伊豆-小笠原海脊黏土矿物的来源与古气候意义[J]. 地学前缘, 2022, 29(4): 73-83. |
[3] | 秦锋, 杨健, 李金锋, 刘海明, 王宇飞. 中国山西张村上新世气候与海拔的初步研究[J]. 地学前缘, 2010, 17(5): 345-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||