地学前缘 ›› 2021, Vol. 28 ›› Issue (2): 58-70.DOI: 10.13745/j.esf.sf.2020.9.1
刘维明1(), 周丽琴1,2, 陈晓清1,*(
), 周震3, Wolfgang SCHWANGHART4, 胡旭东5, 李雪梅1, 张小刚1
收稿日期:
2020-06-30
修回日期:
2020-09-10
出版日期:
2021-03-25
发布日期:
2021-04-03
通信作者:
陈晓清
作者简介:
刘维明(1982—),男,研究员,博士生导师,主要从事古山地灾害研究。E-mail: liuwm@imde.ac.cn
基金资助:
LIU Weiming1(), ZHOU Liqin1,2, CHEN Xiaoqing1,*(
), ZHOU Zhen3, Wolfgang SCHWANGHART4, HU Xudong5, LI Xuemei1, ZHANG Xiaogang1
Received:
2020-06-30
Revised:
2020-09-10
Online:
2021-03-25
Published:
2021-04-03
Contact:
CHEN Xiaoqing
摘要:
堰塞坝会对山区河流的纵剖面产生强烈扰动,在某些情况下,堰塞坝造成的河流纵剖面变陡很容易与构造作用下基准面下降的迁移裂点混淆。然而,在何种程度下堰塞坝会影响基于地貌测量的构造分析还没有系统的研究。因此本文选取青藏高原东缘的雅砻江流域为研究对象,利用遥感影像解译,结合数字高程模型(DEM),来研究堰塞坝对河流纵剖面的影响。通过遥感影像解译和部分野外判识,在雅砻江流域共发现了34个堰塞坝;同时利用TopoToolbox工具包,选用30 m SRTM DEM提取了雅砻江流域河流纵剖面、河流裂点、河流陡峭指数等地貌参数。分析结果表明,有18个堰塞坝与河流裂点在空间上重叠,其中有8个堰塞坝形成高差>100 m的裂点,对河流纵剖面有显著的影响,并发现滑坡坝比泥石流坝对河流纵剖面的影响更大。进一步分析雅砻江主干流及其支流力丘河,发现堰塞坝所在的河段河流陡峭指数相对较大;在排除岩性和断层活动的影响后,发现堰塞作用也能够解释河流裂点的成因。本研究结果指示,在利用DEMs来提取和分析区域构造信息时,必须考虑由堰塞坝引起的河流裂点的影响。
中图分类号:
刘维明, 周丽琴, 陈晓清, 周震, Wolfgang SCHWANGHART, 胡旭东, 李雪梅, 张小刚. 雅砻江流域河道高程剖面上的堰塞坝印记[J]. 地学前缘, 2021, 28(2): 58-70.
LIU Weiming, ZHOU Liqin, CHEN Xiaoqing, ZHOU Zhen, Wolfgang SCHWANGHART, HU Xudong, LI Xuemei, ZHANG Xiaogang. Influence of natural dams on the river profile of the Yalong River Basin[J]. Earth Science Frontiers, 2021, 28(2): 58-70.
图2 降水和陡峭指数分布图以及区域地质图 a—降雨分布图(数据来自http://worldclim.org,精度为1 km×1 km); b—陡峭指数分布图(地形数据源为30 m SRTM DEM);c—区域地质图(数据来自四川地质图http://www.ngac.org.cn/,精度为1∶500 000)。
Fig.2 Geomorphological characteristics of the Yalong River Basin. (a) Precipitation distribution map (data from worldclim.org); (b) Steepness index distribution map (topographic data from 30 m STRM DEM); (c) Regional geological map (data from www.ngac.org.cn).
高程偏移量 阈值/m | 雅砻江流域 总裂点/个 | 雅砻江主干流 裂点/个 | 力丘河主干流 裂点/个 | 其他支流 裂点/个 |
---|---|---|---|---|
30 | 284 | 42 | 7 | 235 |
50 | 143 | 20 | 5 | 118 |
100 | 49 | 7 | 3 | 39 |
200 | 21 | 2 | 2 | 17 |
300 | 13 | 0 | 2 | 11 |
表1 雅砻江流域河流裂点提取情况
Table 1 Extraction of river knickpoints in the Yalong River Basin based on elevation offset threshold
高程偏移量 阈值/m | 雅砻江流域 总裂点/个 | 雅砻江主干流 裂点/个 | 力丘河主干流 裂点/个 | 其他支流 裂点/个 |
---|---|---|---|---|
30 | 284 | 42 | 7 | 235 |
50 | 143 | 20 | 5 | 118 |
100 | 49 | 7 | 3 | 39 |
200 | 21 | 2 | 2 | 17 |
300 | 13 | 0 | 2 | 11 |
堰塞坝编号 | 纬度(N) | 经度(E) | 堰塞坝类型 | 滑坡方量/(104 m3) | 坝高/m | 堰塞坝面积/(104 m2) |
---|---|---|---|---|---|---|
1 | 31°33'1.12″ | 100° 5'15.49″ | 泥石流坝 | 101 | 30.784 1 | |
2 | 30°54'15.11″ | 100°16'13.70″ | 泥石流坝 | 66 | 22.769 6 | |
3 | 30°40'24.65″ | 100°11'42.45″ | 泥石流坝 | 65 | 64.094 1 | |
4 | 30°35'10.42″ | 100°18'17.51″ | 滑坡坝 | 139.80 | 78 | 6.474 2 |
5 | 30°33'51.14″ | 100°18'51.38″ | 泥石流坝 | 70 | 27.373 3 | |
6 | 30°26'8.77″ | 100°31'39.11″ | 泥石流坝 | 58 | 23.909 7 | |
7 | 29°39'0.32″ | 101° 5'28.15″ | 滑坡坝 | 1436.86 | 121 | 33.795 3 |
8 | 29°24'42.21″ | 101° 7'44.28″ | 滑坡坝 | 1 916.57 | 168 | 41.455 9 |
9 | 29°24'14.76″ | 101° 7'16.66″ | 滑坡坝 | 1 303.98 | 157 | 31.547 7 |
10 | 28°26'11.71″ | 101°15'48.76″ | 滑坡坝 | 1 352.19 | 161 | 32.370 4 |
11 | 28°22'29.28″ | 101°18'23.60″ | 滑坡坝 | 4 016.52 | 158 | 70.061 |
12 | 28°18'51.37″ | 101°21'34.04″ | 滑坡坝 | 3 509.83 | 107 | 63.671 0 |
13 | 28°16'59.87″ | 101°22'33.08″ | 滑坡坝 | 9 588.13 | 261 | 129.861 2 |
14 | 27°52'4.12″ | 101°23'22.44″ | 滑坡坝 | 2 544.84 | 119 | 50.689 4 |
15 | 26°49'54.09″ | 101°45'39.97″ | 滑坡坝 | 16 620.72 | 232 | 191.833 |
16 | 29°44'18.84″ | 101°30'47.57″ | 泥石流坝 | 67 | 143.871 5 | |
17 | 29°37'8.12″ | 101°21'59.32″ | 滑坡坝 | 8 196.56 | 197 | 116.193 |
18 | 29°34'26.27″ | 101°20'46.83″ | 滑坡坝 | 10 229.79 | 258 | 135.966 5 |
19 | 29°25'21.52″ | 101°17'29.67″ | 滑坡坝 | 5 542.83 | 189 | 88.040 7 |
20 | 30°33'58.77″ | 100° 7'41.00″ | 滑坡坝 | 1 137.345 | 128 | 28.639 8 |
21 | 31°20'17.31″ | 100°10'23.95″ | 泥石流坝 | 39 | 21.892 8 | |
22 | 30°36'57.68″ | 100°10'59.78″ | 滑坡坝 | 846.42 | 82 | 23.219 7 |
23 | 30°33'51.65″ | 100° 0'58.10″ | 泥石流坝 | 89 | 53.939 9 | |
24 | 30°25'34.16 | 100° 5'39.77″ | 泥石流坝 | 57 | 27.258 1 | |
25 | 28°29'58.50″ | 100°58'59.29″ | 滑坡坝 | 3 083.79 | 170 | 58.087 5 |
26 | 28°21'22.76″ | 100°52'38.55″ | 滑坡坝 | 1 024.85 | 117 | 26.593 5 |
27 | 27°38'46.09″ | 101°40'36.33″ | 泥石流坝 | 92 | 14.639 3 | |
28 | 27°25'22.17″ | 101°43'23.85″ | 泥石流坝 | 90 | 6.201 4 | |
29 | 29°32'8.77″ | 101°23'58.48″ | 泥石流坝 | 148 | 49.483 2 | |
30 | 27°12'6.38″ | 102°17'9.62″ | 泥石流坝 | 98 | 85.678 8 | |
31 | 26°52'22.12″ | 102°17'34.08″ | 泥石流坝 | 41 | 18.313 | |
32 | 27°50'5.98″ | 102°24'33.18″ | 泥石流坝 | 76 | 33.188 7 | |
33 | 27°56'16.05″ | 102°22'8.59″ | 滑坡坝 | 70.15 | 36 | 3.969 9 |
34 | 27°55'30.28″ | 102°23'34.35″ | 滑坡坝 | 123.02 | 68 | 5.912 9 |
表2 堰塞坝的规模统计表
Table 2 Statistics of dam types and sizes
堰塞坝编号 | 纬度(N) | 经度(E) | 堰塞坝类型 | 滑坡方量/(104 m3) | 坝高/m | 堰塞坝面积/(104 m2) |
---|---|---|---|---|---|---|
1 | 31°33'1.12″ | 100° 5'15.49″ | 泥石流坝 | 101 | 30.784 1 | |
2 | 30°54'15.11″ | 100°16'13.70″ | 泥石流坝 | 66 | 22.769 6 | |
3 | 30°40'24.65″ | 100°11'42.45″ | 泥石流坝 | 65 | 64.094 1 | |
4 | 30°35'10.42″ | 100°18'17.51″ | 滑坡坝 | 139.80 | 78 | 6.474 2 |
5 | 30°33'51.14″ | 100°18'51.38″ | 泥石流坝 | 70 | 27.373 3 | |
6 | 30°26'8.77″ | 100°31'39.11″ | 泥石流坝 | 58 | 23.909 7 | |
7 | 29°39'0.32″ | 101° 5'28.15″ | 滑坡坝 | 1436.86 | 121 | 33.795 3 |
8 | 29°24'42.21″ | 101° 7'44.28″ | 滑坡坝 | 1 916.57 | 168 | 41.455 9 |
9 | 29°24'14.76″ | 101° 7'16.66″ | 滑坡坝 | 1 303.98 | 157 | 31.547 7 |
10 | 28°26'11.71″ | 101°15'48.76″ | 滑坡坝 | 1 352.19 | 161 | 32.370 4 |
11 | 28°22'29.28″ | 101°18'23.60″ | 滑坡坝 | 4 016.52 | 158 | 70.061 |
12 | 28°18'51.37″ | 101°21'34.04″ | 滑坡坝 | 3 509.83 | 107 | 63.671 0 |
13 | 28°16'59.87″ | 101°22'33.08″ | 滑坡坝 | 9 588.13 | 261 | 129.861 2 |
14 | 27°52'4.12″ | 101°23'22.44″ | 滑坡坝 | 2 544.84 | 119 | 50.689 4 |
15 | 26°49'54.09″ | 101°45'39.97″ | 滑坡坝 | 16 620.72 | 232 | 191.833 |
16 | 29°44'18.84″ | 101°30'47.57″ | 泥石流坝 | 67 | 143.871 5 | |
17 | 29°37'8.12″ | 101°21'59.32″ | 滑坡坝 | 8 196.56 | 197 | 116.193 |
18 | 29°34'26.27″ | 101°20'46.83″ | 滑坡坝 | 10 229.79 | 258 | 135.966 5 |
19 | 29°25'21.52″ | 101°17'29.67″ | 滑坡坝 | 5 542.83 | 189 | 88.040 7 |
20 | 30°33'58.77″ | 100° 7'41.00″ | 滑坡坝 | 1 137.345 | 128 | 28.639 8 |
21 | 31°20'17.31″ | 100°10'23.95″ | 泥石流坝 | 39 | 21.892 8 | |
22 | 30°36'57.68″ | 100°10'59.78″ | 滑坡坝 | 846.42 | 82 | 23.219 7 |
23 | 30°33'51.65″ | 100° 0'58.10″ | 泥石流坝 | 89 | 53.939 9 | |
24 | 30°25'34.16 | 100° 5'39.77″ | 泥石流坝 | 57 | 27.258 1 | |
25 | 28°29'58.50″ | 100°58'59.29″ | 滑坡坝 | 3 083.79 | 170 | 58.087 5 |
26 | 28°21'22.76″ | 100°52'38.55″ | 滑坡坝 | 1 024.85 | 117 | 26.593 5 |
27 | 27°38'46.09″ | 101°40'36.33″ | 泥石流坝 | 92 | 14.639 3 | |
28 | 27°25'22.17″ | 101°43'23.85″ | 泥石流坝 | 90 | 6.201 4 | |
29 | 29°32'8.77″ | 101°23'58.48″ | 泥石流坝 | 148 | 49.483 2 | |
30 | 27°12'6.38″ | 102°17'9.62″ | 泥石流坝 | 98 | 85.678 8 | |
31 | 26°52'22.12″ | 102°17'34.08″ | 泥石流坝 | 41 | 18.313 | |
32 | 27°50'5.98″ | 102°24'33.18″ | 泥石流坝 | 76 | 33.188 7 | |
33 | 27°56'16.05″ | 102°22'8.59″ | 滑坡坝 | 70.15 | 36 | 3.969 9 |
34 | 27°55'30.28″ | 102°23'34.35″ | 滑坡坝 | 123.02 | 68 | 5.912 9 |
图6 不同高程偏移阈值下的裂点和堰塞坝的分布情况 a—30 m高程偏移阈值; b—50 m高程偏移阈值; c—100 m高程偏移阈值。
Fig.6 Distribution of knickpoints and dams at different elevation offset thresholds
图10 裂点与堰塞坝、断层岩性、陡峭指数相关关系分析 a-图9b中的主干流河段;b-图9c中的主干流河段;c-图9d中的主干流河段;d-图9e中的主干流河段;e-图9d中的力丘河河段。
Fig.10 Correlation analysis of knickpoints with dams, fault lithology and steepness index for the five main stream sections(see Fig. 9b-d)
图11 滑坡坝对河流纵剖面的影响(1~104年尺度)示意图(据文献[11]修改)
Fig.11 Schematic diagram showing the impact of dams on river longitudinal profile on a 1-104 year timescale. Modified after [11].
[1] |
WHIPPLE K X. Bedrock rivers and the geomorphology of active orogens[J]. Annual Review of Earth and Planetary Sciences, 2004,32:151-185.
DOI URL |
[2] |
BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001,414(6865):738-742.
DOI URL |
[3] |
KIRBY E, WHIPPLE K X. Quantifying differential rock-uplift rates via stream profile analysis[J]. Geology, 2001,29(5):415-418.
DOI URL |
[4] |
KIRBY E, WHIPPLE K X. Expression of active tectonics in erosional landscapes[J]. Journal of Structural Geology, 2012,44:54-75.
DOI URL |
[5] |
WHIPPLE K X, HANCOCK G S, ANDERSON R S. River incision into bedrock: mechanics and relative efficacy of plucking, abrasion, and cavitation[J]. Geological Society of America Bulletin, 2000,112(3):490-503.
DOI URL |
[6] |
WILLETT S D, MCCOY S W, PERRON J T, et al. Dynamic reorganization of river basins[J]. Science, 2014,343(6175):1248765.
DOI URL |
[7] |
GOREN L, FOX M, WILLETT S D. Tectonics from fluvial topography using formal linear inversion: theory and applications to the Inyo Mountains, California[J]. Journal of Geophysical Research: Earth Surface, 2014,119(8):1651-1681.
DOI URL |
[8] |
HU X F, PAN B T, KIRBY E, et al. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau[J]. Chinese Science Bulletin, 2010,55(27/28):3205-3214.
DOI URL |
[9] |
WANG Y, ZHANG H, ZHENG D, et al. How a stationary knickpoint is sustained: new insights into the formation of the deep Yarlung Tsangpo Gorge[J]. Geomorphology, 2017,285:28-43.
DOI URL |
[10] |
YANG R, WILLETT S D, GOREN L. In situ low-relief landscape formation as a result of river network disruption[J]. Nature, 2015,520(7548):526-529.
DOI URL |
[11] |
KORUP O, DENSMORE A L, SCHLUNEGGER F. The role of landslides in mountain range evolution[J]. Geomorphology, 2010,120(1/2):77-90.
DOI URL |
[12] |
KORUP O. Rock-slope failure and the river long profile[J]. Geology, 2006,34(1):45-48.
DOI URL |
[13] |
KORUP O, STROM A L, WEIDINGER J T. Fluvial response to large rock-slope failures: examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand[J]. Geomorphology, 2006,78(1/2):3-21.
DOI URL |
[14] |
KORUP O, MONTGOMERY D R. Tibetan Plateau river incision inhibited by glacial stabilization of the Tsangpo gorge[J]. Nature, 2008,455(7214):786-789.
DOI URL |
[15] | KORUP O, MONTGOMERY D R, HEWITT K. Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(12):5317-5322. |
[16] |
OUIMET W B, WHIPPLE K X, ROYDEN L H, et al. The influence of large landslides on river incision in a transient landscape: eastern margin of the Tibetan Plateau (Sichuan, China)[J]. Geological Society of America Bulletin, 2007,119(11/12):1462-1476.
DOI URL |
[17] | WALSH L S, MARTIN A J, OJHA T P, et al. Correlations of fluvial knickzones with landslide dams, lithologic contacts, and faults in the southwestern Annapurna Range, central Nepalese Himalaya[J]. Journal of Geophysical Research: Earth Surface, 2012,117(F1):F01012. |
[18] |
LIU W M, CARLING P A, HU K H, et al. Outburst floods in China: a review[J]. Earth-Science Reviews, 2019,197:102895.
DOI URL |
[19] | CLARK M K, SCHOENBOHM L M, ROYDEN L H, et al. Surface uplift, tectonics, erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 2004,23(1): TC1006. |
[20] | 刘静, 曾令森, 丁林, 等. 青藏高原东南缘构造地貌、活动构造和下地壳流动假说[J]. 地质科学, 2009,44(4):1227-1255. |
[21] | 黄来斌, 白军红, 严登华, 等. 雅砻江流域湿地景观格局变化分析[J]. 长江流域资源与环境, 2012,21(增刊):140-147. |
[22] | 常晓军, 魏伦武, 王德伟. 雅砻江流域地质灾害分布特征及其影响因素分析[J]. 灾害学, 2009,24(3):83-88. |
[23] | 李峥嵘, 彭涛, 董晓华, 等. 雅砻江流域径流极值变化规律及影响因素分析[J]. 水力发电, 2020,46(5):33-37, 84. |
[24] | 张建岭. 雅砻江中游构造地貌特征及演化[D]. 成都: 成都理工大学, 2012. |
[25] | 张培震. 青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程[J]. 中国科学: D辑, 2008,38(9):1041-1056. |
[26] | WHIPPLE K X, TUCKER G E. Implications of sediment-flux-dependent river incision models for landscape evolution[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B2): ETG 3-1 - ETG 3-20. |
[27] | WHIPPLE K X, TUCKER G E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research: Solid Earth, 1999,104(B8):17661-17674. |
[28] |
BURBANK D W. Rates of erosion and their implications for exhumation[J]. Mineralogical Magazine, 2002,66(1):25-52.
DOI URL |
[29] |
WHIPPLE K X. Fluvial landscape response time: how plausible is steady-state denudation?[J]. American Journal of Science, 2001,301(4/5):313-325.
DOI URL |
[30] |
MONTGOMERY D R, FOUFOULA-GEORGIOU E. Channel network source representation using digital elevation models[J]. Water Resources Research, 1993,29(12):3925-3934.
DOI URL |
[31] | WHITTAKER A C, BOULTON S J. Tectonic and climatic controls on knickpoint retreat rates and landscape response times[J]. Journal of Geophysical Research: Earth Surface, 2012,117(F2):F02024. |
[32] | STOCK J, DIETRICH W E. Valley incision by debris flows: evidence of a topographic signature[J]. Water Resources Research, 2003,39(4):1089. |
[33] |
SCHLUNEGGER F, ZEILINGER G, KOUNOV A, et al. Scale of relief growth in the forearc of the Andes of Northern Chile (Arica latitude, 18°S)[J]. Terra Nova, 2006,18(3):217-223.
DOI URL |
[34] |
SCHWANGHART W, SCHERLER D. TopoToolbox 2: MATLAB-based software for topographic analysis and modeling in Earth surface sciences[J]. Earth Surface Dynamics, 2014,2(1):1-7.
DOI URL |
[35] | STOCK J D, MONTGOMERY D R. Geologic constraints on bedrock river incision using the stream power law[J]. Journal of Geophysical Research: Solid Earth, 1999,104(B3):4983-4993. |
[36] | KIRBY E, JOHNSON C, FURLONG K, et al. Transient channel incision along Bolinas Ridge, California: evidence for differential rock uplift adjacent to the San Andreas fault[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F3): F03S07. |
[37] |
PAN B T, LI Q, HU X F, et al. Bedrock channels response to differential rock uplift in eastern Qilian Mountain along the northeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2015,100:1-19.
DOI URL |
[38] | 胡小飞, 潘保田, 李琼. 基岩河道水力侵蚀模型原理及其最新研究进展[J]. 兰州大学学报(自然科学版), 2014,50(6):824-831. |
[39] | 王一舟, 张会平, 郑德文, 等. 基岩河道河流水力侵蚀模型及其应用: 兼论青藏高原基岩河道研究的迫切性[J]. 第四纪研究, 2016,36(4):884-897. |
[40] |
ZHANG HP, KIRBY E, PITLICK J, et al. Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Earth Surface, 2017,122(2):546-572.
DOI URL |
[41] | KIRBY E, WHIPPLE K X, TANG WQ, et al. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: inferences from bedrock channel longitudinal profiles[J]. Journal of Geophysical Research: Solid Earth, 2003,108(B4):2217. |
[42] |
SCHWANGHART W, SCHERLER D. Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques[J]. Earth Surface Dynamics, 2017,5(4):821-839.
DOI URL |
[43] | XU C, SHYU J B H, SHYU J B H . Landslides triggered by the 12 January 2010 Port-au-Prince, Haiti, Mw=7.0 earthquake: visual interpretation, inventory compiling, and spatial distribution statistical analysis[J]. Natural Hazards and Earth System Sciences, 2014,2:1789-1881. |
[44] | 李松, 邓宝昆, 徐红勤, 等. 地震型滑坡灾害遥感快速识别方法研究[J]. 遥感信息, 2015,30(4):25-28. |
[45] | 王孔伟, 邓成进, 张帆. 中国西南雅砻江流域唐古栋滑坡及雨日堆积体形成机理分析[J]. 工程地质学报, 2012,20(6):955-970. |
[46] | 武运泊. 雅砻江卡拉地区滑坡发育规律与成因机制分析[D]. 成都: 成都理工大学, 2015. |
[47] | 王治华. 滑坡遥感[M]. 北京: 科学出版社, 2012. |
[48] | 严祖文, 魏迎奇, 蔡红. 堰塞坝形成机理及稳定性分析[J]. 中国地质灾害与防治学报, 2009,20(4):55-59. |
[49] |
LARSEN I J, MONTGOMERY D R, KORUP O. Landslide erosion controlled by hillslope material[J]. Nature Geoscience, 2010,3(4):247-251.
DOI URL |
[50] | 周丽琴, 刘维明, 赖忠平, 等. 河流堰塞的地貌响应[J]. 第四纪研究, 2019,39(2):366-380. |
[51] | FAN X M, YUNUS A P, JANSEN J D, et al. Comment on ‘Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau’ by Zhao et al. (2019) Geomorphology 338, 27-42[J]. Geomorphology, 2019, 106963. https://doi.org/10.1016/j.geomorph.2019.106963. |
[52] |
LIU WM, LAI Z P, HU K H, et al. Age and extent of a giant glacial-dammed lake at Yarlung Tsangpo gorge in the Tibetan Plateau[J]. Geomorphology, 2015,246:370-376.
DOI URL |
[53] |
CLARK M K, HOUSE M A, ROYDEN L H, et al. Late Cenozoic uplift of southeastern Tibet[J]. Geology, 2005,33(6):525-528.
DOI URL |
[54] |
OUIMET W B, WHIPPLE K X, GRANGER D E. Beyond threshold hillslopes: channel adjustment to base-level fall in tectonically active mountain ranges[J]. Geology, 2009,37(7):579-582.
DOI URL |
[55] |
PENNA I M, HERMANNS R L, DAICZ S, et al. Effects of tectonic deformation and landslides in the erosion of a mountain plateau in the transitional zone between the central and Patagonian Andes[J]. American Journal of Science, 2015,315:257-274.
DOI URL |
[1] | 汤明高, 刘昕昕, 李广, 赵欢乐, 许强, 朱星, 李为乐. 雅鲁藏布江色东普沟冰崩机理试验研究[J]. 地学前缘, 2023, 30(4): 405-417. |
[2] | 郭兆成, 周成虎, 孙晓宇, 张俊. 汶川地震触发崩滑地质灾害空间分布及影响因素[J]. 地学前缘, 2010, 17(5): 234-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||