地学前缘 ›› 2024, Vol. 31 ›› Issue (4): 147-164.DOI: 10.13745/j.esf.sf.2024.5.14

• 物联网在线监测大数据 • 上一篇    下一篇

能源资源开发区域大气CO2时空变化及影响因素分析

杨慧1(), 范怀伟1, 徐晓2, 张云惠3, 王文峰1,4,*(), 闫兆进1, 王成5, 王俊辉6, 刘蕾7, 王冉1, 慈慧1   

  1. 1.中国矿业大学 资源与地球科学学院, 煤层气成藏过程教育部重点实验室, 江苏 徐州 221116
    2.滁州学院 地理信息与旅游学院, 安徽 滁州 239000
    3.新疆维吾尔自治区气象台, 新疆 乌鲁木齐 830002
    4.新疆大学 地质与矿业工程学院, 新疆 乌鲁木齐 830017
    5.新疆维吾尔自治区人民政府国家305项目办公室, 新疆 乌鲁木齐 830000
    6.新疆维吾尔自治区地质局, 新疆 乌鲁木齐 830000
    7.新疆维吾尔自治区生态环境监测总站, 新疆 乌鲁木齐 830011
  • 收稿日期:2023-08-31 修回日期:2023-09-27 出版日期:2024-07-25 发布日期:2024-07-10
  • 通信作者: * 王文峰(1970—),男,教授,博士生导师,主要从事地煤田地质勘查、化石能源地球化学研究工作。E-mail: wenfwang@163.com
  • 作者简介:杨 慧(1983—),女,教授,博士生导师,主要从事地球信息科学与技术、地球科学大数据研究工作。E-mail: yanghui@cumt.edu.cn
  • 基金资助:
    科学技术部第三次新疆综合科学考察项目(2022xjkk1006);新疆维吾尔自治区重点研发任务专项(2022B01012-1);国家自然科学基金面上项目(41971335);江苏省自然资源科技计划项目(2023018);江苏省自然资源科技计划项目(2022004);智能地学信息处理湖北省重点实验室开放基金课题“基于图神经网络的地面站点CO2浓度时空预测(KLIGIP-2023-A04)

Analysis of spatio-temporal variations and influencing factors of atmospheric CO2 concentrations in energy resources development areas

YANG Hui1(), FAN Huaiwei1, XU Xiao2, ZHANG Yunhui3, WANG Wenfeng1,4,*(), YAN Zhaojin1, WANG Cheng5, WANG Junhui6, LIU Lei7, WANG Ran1, CI Hui1   

  1. 1. Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process, Ministry of Education, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
    2. College of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000,China
    3. Xinjiang Uygur Autonomous Region Meteorological Observatory, ürümqi 830002, China
    4. College of Geology and Mining Engineering, Xinjiang University, ürümqi 830017, China
    5. National 305 Project Office, The People’s Government of Xinjiang Uygur Autonomous Region, ürümqi 830000, China
    6. Geological Bureau of Xinjiang Uygur Autonomous Region, ürümqi 830000, China
    7. Ecological Environment Monitoring Station of Xinjiang Uygur Autonomous Region, ürümqi 830011, China
  • Received:2023-08-31 Revised:2023-09-27 Online:2024-07-25 Published:2024-07-10

摘要:

分析能源资源开发区域大气碳浓度的时空变化和影响因素,对于探索“碳达峰”“碳中和”背景下能源资源开发高质量发展路径至关重要。新疆维吾尔自治区是我国重要的能源和战略资源基地,本文面向新疆维吾尔自治区的能源资源开发现状,采集并预处理了2015—2021年轨道碳观测卫星-2(Orbiting Carbon Observatory-2,OCO-2)二氧化碳L3数据产品,分析研究区大气碳浓度的时间变化趋势和空间分布格局,构建深度森林回归模型,并分析各影响因素对碳浓度时空变化的驱动作用。结果表明:(1)新疆维吾尔自治区、准噶尔盆地、吐哈盆地和塔里木盆地XCO2浓度在2015—2021年均呈周期性上升趋势,增长率呈“先减后增”,且季节变化趋势呈现明显的“春季高冬季低”;(2)在春、秋和冬季,新疆XCO2浓度空间格局呈现“北高南低”的趋势,在盆地区域及能源资源开发区域出现XCO2高浓度积聚现象,夏季则呈现“北低南高”趋势;(3)地形起伏、风场流速、NDVI、地表温度、降水量、10 mV风、10 mU风和能源开发强度对区域XCO2浓度时空分布有显著影响,各因素呈现明显的空间异质性和显著差异。研究结果有助于理解能源资源开采区域的大气碳浓度时空演变机制,在国家碳减排目标的实现、指导碳中和策略、追踪碳减排效果等方面具有深远意义。

关键词: 能源资源开发, XCO2时空变化, 影响因素, 深度森林回归模型

Abstract:

Analyzing the spatio-temporal variations of atmospheric carbon concentrations in energy resources development areas and identifying influencing factors are crucial for exploring a high-quality development pathway in the context of “Dual Carbon”. Xinjiang Uygur Autonomous Region serves as a vital base for energy and strategic resources in China. This study oriented to the current status of energy resource development in Xinjiang Uygur Autonomous Region, we collected and preprocessed Orbiting Carbon Observatory-2 (OCO-2) carbon dioxide Level 3 data products from 2015 to 2021. We analyzed the temporal trends and spatial distribution patterns of atmospheric carbon concentration in the study area and structured a deep forest regression model to analyze the driving factors of the spatio-temporal variations in carbon concentration. The results indicate that: (1) Xinjiang Uygur Autonomous Region, Junggar Basin, Turpan-Hami Basin and Tarim Basin’s XCO2 concentration exhibited a cyclic upward trend from 2015 to 2021, with a “decrease-first then increase” growth rate, showing a distinct “high in spring, low in winter” seasonal variation trend; (2) in spring, autumn, and winter, the spatial pattern of XCO2 concentration in Xinjiang shows a “high in the north, low in the south” trend, with high XCO2 concentrations accumulating in basin and energy resource development areas. Conversely, a trend of “low in the north, high in the south” observed in summer; (3) topographic relief, wind velocity, NDVI, land surface temperature, precipitation, 10-meter V wind, 10-meter U wind, and energy development intensity significantly influence the spatio-temporal distribution of regional XCO2 concentration, showing notable spatial heterogeneity and significant differences. These findings contribute to understanding the mechanism of carbon concentration evolution in energy resource extraction areas and hold profound implications for achieving national carbon reduction targets, guiding carbon neutrality strategies, and monitoring carbon emission reduction effects.

Key words: energy resources development, spatio-temporal variations of XCO2, influencing factor, deep forest regression model

中图分类号: