[1] |
STERN L A, KIRBY S H, DURHAM W B. Polycrystalline methane hydrate: synthesis from superheated ice, and low-temperature mechanical properties[J]. Energy and Fuels, 1998, 12(2): 201-211.
|
[2] |
KVENVOLDEN K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry, 1995, 23(11/12): 997-1008.
|
[3] |
沙志彬, 梁金强, 苏丕波, 等. 珠江口盆地东部海域天然气水合物钻探结果及其成藏要素研究[J]. 地学前缘, 2015, 22(6): 125-135.
DOI
|
[4] |
CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652.
|
[5] |
ZHAO J F, LIU D, YANG M J, et al. Analysis of heat transfer effects on gas production from methane hydrate by depressurization[J]. International Journal of Heat and Mass Transfer, 2014, 77: 529-541.
|
[6] |
WANG Y, FENG J C, LI X S, et al. Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods[J]. Energy, 2015, 90: 1931-1948.
|
[7] |
HUANG L, SU Z, WU N Y, et al. Analysis on geologic conditions affecting the performance of gas production from hydrate deposits[J]. Marine and Petroleum Geology, 2016, 77: 19-29.
|
[8] |
LI G, WU D M, LI X S, et al. Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands[J]. Applied Energy, 2017, 202: 282-292.
|
[9] |
蔡建超, 夏宇轩, 徐赛, 等. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 2020, 52(1): 208-223.
DOI
|
[10] |
SHEN P F, LI G, LI B, et al. Coupling effect of porosity and hydrate saturation on the permeability of methane hydrate-bearing sediments[J]. Fuel, 2020, 269: 117425.
|
[11] |
DELLI M L, GROZIC J L H. Experimental determination of permeability of porous media in the presence of gas hydrates[J]. Journal of Petroleum Science and Engineering, 2014, 120: 1-9.
|
[12] |
LI Y L, LIU L L, JIN Y R, et al. Characterization and development of marine natural gas hydrate reservoirs in clayey-silt sediments: a review and discussion[J]. Advances in Geo-Energy Research, 2021, 5(1): 75-86.
|
[13] |
SUZUKI K, SCHULTHEISS P, NAKATSUKA Y, et al. Physical properties and sedimentological features of hydrate-bearing samples recovered from the first gas hydrate production test site on Daini-Atsumi Knoll around eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 346-357.
|
[14] |
吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5): 1-11.
|
[15] |
刘昌岭, 孟庆国, 李承峰, 等. 南海北部陆坡天然气水合物及其赋存沉积物特征[J]. 地学前缘, 2017, 24(4): 41-50.
DOI
|
[16] |
CHUVILIN E, GREBENKIN S, ZHMAEV M. Gas permeability of sandy sediments: effects of phase changes in pore ice and gas hydrates[J]. Energy and Fuels, 2021, 35(9): 7874-7882.
|
[17] |
DAIGLE H, COOK A, MALINVERNO A. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2015, 68: 551-564.
|
[18] |
WU Z R, LIU W G, ZHENG J N, et al. Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments[J]. Applied Energy, 2020, 261: 114479.
|
[19] |
杨德欢, 韦昌富, 颜荣涛, 等. 细粒迁移及组构变化对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2019, 41(11): 2009-2017.
|
[20] |
WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations[J]. Canadian Geotechnical Journal, 2006, 43(6): 587-600.
|
[21] |
CHEN J, ANANDARAJAH A. Influence of pore fluid composition on volume of sediments in kaolinite suspensions[J]. Clays and Clay Minerals, 1998, 46(2): 145-152.
|
[22] |
中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
|
[23] |
祝有海, 饶竹, 刘坚, 等. 南海西沙海槽S14站位的地球化学异常特征及其意义[J]. 现代地质, 2005, 19(1): 39-44.
|
[24] |
郭依群, 杨胜雄, 梁金强, 等. 南海北部神狐海域高饱和度天然气水合物分布特征[J]. 地学前缘, 2017, 24(4): 24-31.
DOI
|
[25] |
胡士骏, 陈盼, 韦昌富, 等. NaCl溶液作用下深海沉积物基本物理力学响应[J]. 岩土工程学报, 2021, 43(增刊2): 142-145.
|
[26] |
李广信. 高等土力学[M]. 2版. 北京: 清华大学出版社, 2016.
|
[27] |
张芹, 颜荣涛, 韦昌富, 等. 孔隙溶液对粉质黏土界限含水率的影响[J]. 岩土力学, 2015, 36(增刊1): 558-562, 608.
|
[28] |
肖桂元, 朱杰茹, 徐光黎, 等. NaCl溶液引起红黏土界限含水率变化的试验研究[J]. 中南大学学报(自然科学版), 2021, 52(9): 3314-3321.
|
[29] |
杨德欢, 颜荣涛, 韦昌富, 等. 粉质黏土强度指标的水化学敏感性研究[J]. 岩土力学, 2016, 37(12): 3529-3536.
|
[30] |
SPAGNOLI G, SRIDHARAN A, ORESTE P, et al. A probabilistic approach for the assessment of the influence of the dielectric constant of pore fluids on the liquid limit of smectite and kaolinite[J]. Applied Clay Science, 2017, 145: 37-43.
|
[31] |
YIN J, HU M M, XU G Z, et al. Effect of salinity on rheological and strength properties of cement-stabilized clay minerals[J]. Marine Georesources and Geotechnology, 2020, 38(5): 611-620.
|
[32] |
HORPIBULSUK S, YANGSUKKASEAM N, CHINKULKIJNIWAT A, et al. Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite[J]. Applied Clay Science, 2011, 52(1/2): 150-159.
|
[33] |
JANG J, CARLOS SANTAMARINA J. Fines classification based on sensitivity to pore-fluid chemistry[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(4): 06015018.
|
[34] |
JANG J, CAO S C, STERN L A, et al. Impact of pore fluid chemistry on fine-grained sediment fabric and compressibility[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 5495-5514.
|
[35] |
LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16.
|
[36] |
NAGARAJ T S, PANDIAN N S, NARASHIMHA RAJU P S R. Stress state-permeability relationships for fine-grained soils[J]. Géotechnique, 1993, 43(2): 333-336.
|
[37] |
朱俊高, 吉恩跃, 方智荣, 等. 粗粒土等压固结与K0固结三轴试验比较[J]. 防灾减灾工程学报, 2013, 33(4): 394-398, 404.
|
[38] |
高彬, 陈筠, 杨恒, 等. 红黏土在不同应力路径下的力学特性试验研究[J]. 地下空间与工程学报, 2018, 14(5): 1202-1212.
|
[39] |
房营光, 徐亚飞, 谷任国, 等. 基于有效孔隙分布特征的黏土渗透系数公式推导[J]. 人民长江, 2023, 54(1): 227-232.
|
[40] |
党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909-1917.
|
[41] |
崔德山, 项伟, 曹李靖, 等. ISS减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949.
|